Previous |  Up |  Next

Article

Title: On the local spectral radius in partially ordered Banach spaces (English)
Author: Zima, Mirosława
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 4
Year: 1999
Pages: 835-841
.
Category: math
.
MSC: 34K40
MSC: 47A11
MSC: 47B60
MSC: 47B99
idZBL: Zbl 1008.47004
idMR: MR1746709
.
Date available: 2009-09-24T10:28:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127533
.
Reference: [1] A. Augustynowicz, M. Kwapisz: On a numerical-analytic method of solving of boundary value problem for functional differential equation of neutral type.Math. Nachr. 145 (1990), 255–269. MR 1069034, 10.1002/mana.19901450120
Reference: [2] J. Banaś: Applications of measures of noncompactness to various problems.Folia Scientiarum Universitatis Technicae Resoviensis 34 (1987). MR 0884890
Reference: [3] D. Bugajewski: On some applications of theorems on the spectral radius to differential equations.J. Anal. Appl. 16 (1997), 479–484. Zbl 0880.35125, MR 1459970
Reference: [4] D. Bugajewski, M. Zima: On the Darboux problem of neutral type.Bull. Austral. Math. Soc. 54 (1996), 451–458. MR 1419608, 10.1017/S0004972700021869
Reference: [5] J. Daneš: On local spectral radius.Čas. pěst. mat. 112 (1987), 177–187. MR 0897643
Reference: [6] A. R. Esayan: On the estimation of the spectral radius of the sum of positive semicommutative operators (in Russian).Sib. Mat. Zhur. 7, 460–464.
Reference: [7] L. Faina: Existence and continuous dependence for a class of neutral functional differential equations.Ann. Polon. Math. 64 (1996), 215–226. Zbl 0873.34051, MR 1410341, 10.4064/ap-64-3-215-226
Reference: [8] K.-H. Förster, B. Nagy: On the local spectral radius of a nonnegative element with respect to an irreducible operator.Acta Sci. Math. 55 (1991), 155–166. MR 1124954
Reference: [9] M. A. Krasnoselski et al.: Approximate solutions of operator equations.Noordhoff, Groningen, 1972.
Reference: [10] V. Müller: Local spectral radius formula for operators in Banach spaces.Czechoslovak Math. J. 38 (1988), 726–729. MR 0962915
Reference: [11] P. P. Zabrejko: The contraction mapping principle in K-metric and locally convex spaces (in Russian).Dokl. Akad. Nauk BSSR 34 (1990), 1065–1068. MR 1095667
Reference: [12] M. Zima: A certain fixed point theorem and its applications to integral-functional equations.Bull. Austral. Math. Soc. 46 (1992), 179–186. Zbl 0761.34048, MR 1183775, 10.1017/S0004972700011813
Reference: [13] M. Zima: A theorem on the spectral radius of the sum of two operators and its applications.Bull. Austral. Math. Soc. 48 (1993), 427–434. MR 1248046, 10.1017/S0004972700015884
.

Files

Files Size Format View
CzechMathJ_49-1999-4_15.pdf 293.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo