Previous |  Up |  Next

Article

Title: $M$-ideals of compact operators into $\ell_p$ (English)
Author: John, Kamil
Author: Werner, Dirk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 1
Year: 2000
Pages: 51-57
Summary lang: English
.
Category: math
.
Summary: We show for $2\le p<\infty $ and subspaces $X$ of quotients of $L_{p}$ with a $1$-unconditional finite-dimensional Schauder decomposition that $K(X,\ell _{p})$ is an $M$-ideal in $L(X,\ell _{p})$. (English)
MSC: 46B28
MSC: 47B07
MSC: 47L05
idZBL: Zbl 1040.46020
idMR: MR1745458
.
Date available: 2009-09-24T10:29:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127547
.
Reference: [1] E. M. Alfsen and E. G. Effros: Structure in real Banach spaces. Parts I and II.Ann. of Math. 96 (1972), 98–173. MR 0352946, 10.2307/1970895
Reference: [2] P. G. Casazza and N. J. Kalton: Notes on approximation properties in separable Banach spaces.Geometry of Banach Spaces, Proc. Conf. Strobl 1989, P. F. X. Müller and W. Schachermayer (eds.), London Mathematical Society Lecture Note Series 158, Cambridge University Press, 1990, pp. 49–63. MR 1110185
Reference: [3] G. Godefroy, N. J. Kalton, and P. D. Saphar: Unconditional ideals in Banach spaces.Studia Math. 104 (1993), 13–59. MR 1208038
Reference: [4] P. Harmand, D. Werner, and W. Werner: $M$-Ideals in Banach Spaces and Banach Algebras.Lecture Notes in Math. 1547, Springer, Berlin-Heidelberg-New York, 1993. MR 1238713
Reference: [5] N. J. Kalton: $M$-ideals of compact operators.Illinois J. Math. 37 (1993), 147–169. Zbl 0824.46029, MR 1193134, 10.1215/ijm/1255987254
Reference: [6] N. J. Kalton and D. Werner: Property $(M)$, $M$-ideals and almost isometric structure of Banach spaces.J. Reine Angew. Math. 461 (1995), 137–178. MR 1324212
Reference: [7] A. Lima: Property $(wM^*)$ and the unconditional metric compact approximation property.Studia Math. 113 (1995), 249–263. Zbl 0826.46013, MR 1330210, 10.4064/sm-113-3-249-263
Reference: [8] D. Li: Complex unconditional metric approximation property for $C_\Lambda (\mathbf T)$ spaces.Preprint (1995). MR 1424701
Reference: [9] Ch. A. McCarthy: $c_p$.Israel J. Math. 5 (1967), 249–271. MR 0225140
Reference: [10] E. Oja: Dual de l’espace des opérateurs linéaires continus.C. R. Acad. Sc. Paris, Sér. A 309 (1989), 983–986. Zbl 0684.47025, MR 1054748
Reference: [11] D. Werner: New classes of Banach spaces which are $M$-ideals in their biduals.Math. Proc. Cambridge Phil. Soc. 111 (1992), 337–354. Zbl 0787.46020, MR 1142754, 10.1017/S0305004100075447
.

Files

Files Size Format View
CzechMathJ_50-2000-1_7.pdf 320.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo