Previous |  Up |  Next

Article

Title: Construction of $po$-groups with quasi-divisors theory (English)
Author: Močkoř, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 1
Year: 2000
Pages: 197-207
Summary lang: English
.
Category: math
.
Summary: A method is presented making it possible to construct $po$-groups with a strong theory of quasi-divisors of finite character and with some prescribed properties as subgroups of restricted Hahn groups $H(\Delta ,\mathbb{Z})$, where $\Delta $ are finitely atomic root systems. Some examples of these constructions are presented. (English)
Keyword: quasi-divisor theory
Keyword: divisor class group
MSC: 06F15
MSC: 13F05
MSC: 13F99
MSC: 13J25
idZBL: Zbl 1036.06009
idMR: MR1745472
.
Date available: 2009-09-24T10:31:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127561
.
Reference: [1] Anderson, M., Feil, T.: Lattice-ordered Groups.D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. MR 0937703
Reference: [2] Aubert, K.E.: Divisors of finite character.Annali di matem. pura ed appl. 33 (1983), 327–361. Zbl 0533.20034, MR 0725032
Reference: [3] Aubert, K.E.: Localizations dans les systémes d’idéaux.C.R.Acad. Sci. Paris 272 (1971), 465–468. MR 0277511
Reference: [4] Borevich, Z. I. and Shafarevich, I. R.: Number Theory.Academic Press, New York, 1966. MR 0195803
Reference: [5] Conrad, P.: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [6] Chouinard, L. G.: Krull semigroups and divisor class group.Canad. J. Math. 33 (1981), 1459–1468. MR 0645239, 10.4153/CJM-1981-112-x
Reference: [7] Geroldinger, A., Močkoř, J.: Quasi-divisor theories and generalizations of Krull domains.J. Pure Appl. Algebra 102 (1995), 289–311. MR 1354993, 10.1016/0022-4049(94)00088-Z
Reference: [8] Gilmer, R.: Multiplicative Ideal Theory.M. Dekker, Inc., New York, 1972. Zbl 0248.13001, MR 0427289
Reference: [9] Griffin, M.: Rings of Krull type.J. Reine Angew. Math. 229 (1968), 1–27. Zbl 0173.03504, MR 0220726
Reference: [10] Griffin, M.: Some results on v-multiplication rings.Canad. J. Math. 19 (1967), 710–722. Zbl 0148.26701, MR 0215830, 10.4153/CJM-1967-065-8
Reference: [11] Jaffard, P.: Les systémes d’idéaux.Dunod, Paris, 1960. Zbl 0101.27502, MR 0114810
Reference: [12] Močkoř, J.: Groups of Divisibility.D. Reidl Publ. Co., Dordrecht, 1983. MR 0720862
Reference: [13] Močkoř, J., Alajbegovic, J.: Approximation Theorems in Commutative Algebra.Kluwer Academic publ., Dordrecht, 1992. MR 1207134
Reference: [14] Močkoř, J.,Kontolatou, A.: Groups with quasi-divisor theory.Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. MR 1223185
Reference: [15] Močkoř, J.,Kontolatou, A.: Divisor class groups of ordered subgroups.Acta Math. Inform. Univ. Ostraviensis 1 (1993). MR 1250925
Reference: [16] Močkoř, J., Kontolatou, A.: Quasi-divisors theory of partly ordered groups.Grazer Math. Ber. 318 (1992), 81–98. MR 1227404
Reference: [17] Močkoř, J.: $t$-Valuation and theory of quasi-divisors,.To appear in J. Pure Appl. Algebra. MR 1466097
Reference: [18] Močkoř, J., Kontolatou, A.: Some remarks on Lorezen $r$-group of partly ordered group,.Czechoslovak Math. J. 46(121) (1996), 537–552. MR 1408304
Reference: [19] Močkoř, J.: Divisor class group and the theory of quasi-divisors.To appear. MR 1765996
Reference: [20] Ohm, J.: Semi-valuations and groups of divisibility.Canad. J. Math. 21 (1969), 576–591. Zbl 0177.06501, MR 0242819, 10.4153/CJM-1969-065-9
Reference: [21] Skula, L.: Divisorentheorie einer Halbgruppe.Math. Z. 114 (1970), 113–120. Zbl 0177.03202, MR 0262401
Reference: [22] Skula, L.: On $c$-semigroups.Acta Arith. 31 (1976), 247–257. Zbl 0303.13014, MR 0444817, 10.4064/aa-31-3-247-257
.

Files

Files Size Format View
CzechMathJ_50-2000-1_21.pdf 353.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo