Previous |  Up |  Next

Article

Title: On vector valued measure spaces of bounded $\Phi$-variation containing copies of $\ell_\infty$ (English)
Author: Rivera, María J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 1
Year: 2001
Pages: 67-72
Summary lang: English
.
Category: math
.
Summary: Given a Young function $\Phi $, we study the existence of copies of $c_0$ and $\ell _{\infty }$ in $\mathop {\mathrm cabv}\nolimits _{\Phi } (\mu ,X)$ and in $\mathop {\mathrm cabsv}\nolimits _{\Phi } (\mu ,X)$, the countably additive, $\mu $-continuous, and $X$-valued measure spaces of bounded $\Phi $-variation and bounded $\Phi $-semivariation, respectively. (English)
MSC: 46B20
MSC: 46E40
idZBL: Zbl 1079.46513
idMR: MR1814633
.
Date available: 2009-09-24T10:39:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127627
.
Reference: [1] Ch. J. de la Vallée Poussin: Sur l’integrale de Lebesgue.Trans. Amer. Math. Soc. 16 (1915), 435–501. MR 1501024, 10.2307/1988879
Reference: [2] L. Drewnowski and G. Emmanuelle: The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_0$.Studia Math. 104 (1993), 110–123. MR 1211812
Reference: [3] G. Emmanuelle: On complemented copies of $c_0$ in $L_{X}^{p}$, $1 \le p < \infty $.Proc. Amer. Math. Soc. 104, 785–786.
Reference: [4] J. C. Ferrando: Copies of $c_0$ in certain vector-valued function Banach spaces.Math. Scand. 77 (1995), 148–152. MR 1365911, 10.7146/math.scand.a-12555
Reference: [5] J. Mendoza: Copies of $\ell _{\infty }$ in $L^{p} (\mu ;X)$.Proc. Amer. Math. Soc. 109 (1990), 125–127. MR 1012935
Reference: [6] M. M. Rao and Z. D. Ren: Theory of Orlicz Spaces.Marcel Dekker Inc., 1991. MR 1113700
Reference: [7] H. P. Rosenthal: On relatively disjoint families of measures with some applications to Banach spaces theory.Studia Math. 37 (1970), 13–16. MR 0270122, 10.4064/sm-37-1-13-36
Reference: [8] J. J. Uhl Jr.: Orlicz spaces of finitely additive set functions.Studia Math. XXIX (1967), 19–58. Zbl 0158.13703, MR 0226395
.

Files

Files Size Format View
CzechMathJ_51-2001-1_7.pdf 326.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo