Previous |  Up |  Next

Article

Title: $A$-projective resolutions and an Azumaya theorem for a class of mixed abelian groups (English)
Author: Albrecht, Ulrich
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 1
Year: 2001
Pages: 73-93
.
Category: math
.
MSC: 20K21
MSC: 20K25
MSC: 20K27
MSC: 20K40
idZBL: Zbl 1079.20503
idMR: MR1814634
.
Date available: 2009-09-24T10:40:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127628
.
Reference: [ALBR] U. Albrecht: Endomorphism rings of faithfully flat abelian groups of infinite rank.Results Math. 17 (1990), 179–201. MR 1052585, 10.1007/BF03322457
Reference: [ALBR3] U. Albrecht: On the construction of $A$-solvable abelian groups.Czechoslovak Math. J. 44 (1994), 413–430. MR 1288162
Reference: [AGW] U. Albrecht, H. P. Goeters and W. Wickless: The flat dimension of mixed abelian groups as $E$-modules.Rocky Mountain J. Math. 25 (1995), 569–590. MR 1336551, 10.1216/rmjm/1181072238
Reference: [AF] F. Anderson and K. Fuller: Rings and Categories of Modules.Springer Verlag, 1992. MR 1245487
Reference: [Ar] D. Arnold: Abelian groups flat over their endomorphism ring.Preprint.
Reference: [AHR] D. Arnold, R. Hunter and F. Richman: Global Azumaya theorems in additive categories.J. Pure Appl. Algebra 16 (1980), 232–242. MR 0558485, 10.1016/0022-4049(80)90026-2
Reference: [AL] D. Arnold and L. Lady: Endomorphism rings and direct sums of torsion-free abelian groups.Trans. Amer. Math. Soc. 211 (1975), 225–237. MR 0417314, 10.1090/S0002-9947-1975-0417314-1
Reference: [B] R. Baer: Abelian groups without elements of finite order.Duke Math. J. 3 (1937), 68–122. Zbl 0016.20303, MR 1545974, 10.1215/S0012-7094-37-00308-9
Reference: [DG] M. Dugas and R. Goebel: Every cotorsion-free ring is an endomorphism ring.Proc. London Math. Soc. 45 (1982), 319–336. MR 0670040
Reference: [Fu] L. Fuchs: Infinite Abelian Groups.Academic Press, New York, London, 1970/73. MR 0255673
Reference: [GW] S. Glaz and W. Wickless: Regular and principal projective endomorphism rings of mixed abelian groups.(to appear). MR 1261253
Reference: [Gr] P. Griffith: Infinite Abelian Groups.Chicago Lectures in Mathematics, 1970. MR 0289638
Reference: [HRW] R. Hunter, F. Richman and E. Walker: Warfield modules.LNM 616, Springer, 1977, pp. 87–139. MR 0506216
Reference: [Ka] I. Kaplansky: Projective modules.Ann. of Math. 68 (1958), 372–377. Zbl 0083.25802, MR 0100017, 10.2307/1970252
Reference: [Ku] L. Kulikov: On direct decompositions of groups.Ukrain. Mat. Zh. 4 (1952), 230–275, 347–372. MR 0058598
Reference: [ST] B. Stenström: Ring of Quotients.Springer Verlag, Berlin, Heidelberg, New York, 1975. MR 0389953
Reference: [U] F. Ulmer: A flatness criterion in Grothendick categories.Invent. Math. 19 (1973), 331–336. MR 0335601, 10.1007/BF01425418
Reference: [W] W. Wickless: A functor from mixed groups to torsion-free groups.Contemp. Math. 171 (1994), 407–417. Zbl 0821.20036, MR 1293158, 10.1090/conm/171/01792
.

Files

Files Size Format View
CzechMathJ_51-2001-1_8.pdf 465.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo