Previous |  Up |  Next

Article

Title: Variational measures in the theory of the integration in $\mathbb R^m$ (English)
Author: Di Piazza, Luisa
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 1
Year: 2001
Pages: 95-110
Summary lang: English
.
Category: math
.
Summary: We study properties of variational measures associated with certain conditionally convergent integrals in ${\mathbb R}^m$. In particular we give a full descriptive characterization of these integrals. (English)
Keyword: variational measures and derivates of set functions
Keyword: Riemann generalized integrals
MSC: 26A39
MSC: 26A45
MSC: 28A15
idZBL: Zbl 1079.28500
idMR: MR1814635
.
Date available: 2009-09-24T10:40:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127629
.
Reference: [1] B. Bongiorno: Essential variation. Measure Theory Oberwolfach 1981.Lecture Notes in Math. No. 945, Springer-Verlag, Berlin, 1981, pp. 187–193. MR 0675282
Reference: [BDP] B. Bongiorno, L. Di Piazza and D. Preiss: Infinite variation and derivates in ${R}^m$.J. Math. Anal. Appl. 224 (1998), 22–33. MR 1632942, 10.1006/jmaa.1998.5982
Reference: [3] B. Bongiorno, L. Di Piazza and V. Skvortsov: The essential variation of a function and some convergence theorems.Anal. Math. 22 (1996), 3–12. MR 1384345, 10.1007/BF02342334
Reference: [BDS] B. Bongiorno, L. Di Piazza and V. Skvortsov: A new full descriptive characterization of Denjoy-Perron integral.Real Anal. Exchange 21 (1995–96), 656–663. MR 1407278
Reference: [2] Z. Buczolich and W. F. Pfeffer: On absolute continuity.J. Math. Anal. Appl. 222 (1998), 64–78. MR 1623859, 10.1006/jmaa.1997.5804
Reference: [4] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties.Czechoslovak Math. J. 45 (120) (1995), 79–106. MR 1314532
Reference: [5] J. Jarník and J. Kurzweil: Differentiability and integrability in $n$-dimension with respect to $\alpha $-regular intervals.Results Math. 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075
Reference: [6] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields.Czechoslovak Math. J. 31 (106) (1981), 614–632. Zbl 0562.26004, MR 0631606
Reference: [Mc] E. J. McShane: Unified integration.Academic Press, New York, 1983. Zbl 0551.28001, MR 0740710
Reference: [O] K. M. Ostaszewski: Henstock integration in the plane.Mem. Amer. Math. Soc. 253 (1986). Zbl 0596.26005, MR 0856159
Reference: [7] W. F. Pfeffer: The Riemann Approach to Integration.Cambridge Univ. Press, Cambridge, 1993. Zbl 0804.26005, MR 1268404
Reference: [P] W. F. Pfeffer: On variation of functions of one real variable.Comment. Math. Univ. Carolin. 38 (1997), 61–71. MR 1455470
Reference: [8] W. F. Pfeffer: On additive continuous functions of figures.Rend. Instit. Mat. Univ. Trieste, suppl. 29 (1998), 115–133. Zbl 0921.26008, MR 1696024
Reference: [9] W. Rudin: Real and complex analysis.McGraw-Hill, New York, 1987. Zbl 0925.00005, MR 0924157
Reference: [10] S. Saks: Theory of the integral.Dover, New York, 1964. MR 0167578
Reference: [11] B. S. Thomson: Derivates of intervals functions.Mem. Amer. Math. Soc. 452 (1991). MR 1078198
.

Files

Files Size Format View
CzechMathJ_51-2001-1_9.pdf 404.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo