Title:
|
Variational measures in the theory of the integration in $\mathbb R^m$ (English) |
Author:
|
Di Piazza, Luisa |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
95-110 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study properties of variational measures associated with certain conditionally convergent integrals in ${\mathbb R}^m$. In particular we give a full descriptive characterization of these integrals. (English) |
Keyword:
|
variational measures and derivates of set functions |
Keyword:
|
Riemann generalized integrals |
MSC:
|
26A39 |
MSC:
|
26A45 |
MSC:
|
28A15 |
idZBL:
|
Zbl 1079.28500 |
idMR:
|
MR1814635 |
. |
Date available:
|
2009-09-24T10:40:10Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127629 |
. |
Reference:
|
[1] B. Bongiorno: Essential variation. Measure Theory Oberwolfach 1981.Lecture Notes in Math. No. 945, Springer-Verlag, Berlin, 1981, pp. 187–193. MR 0675282 |
Reference:
|
[BDP] B. Bongiorno, L. Di Piazza and D. Preiss: Infinite variation and derivates in ${R}^m$.J. Math. Anal. Appl. 224 (1998), 22–33. MR 1632942, 10.1006/jmaa.1998.5982 |
Reference:
|
[3] B. Bongiorno, L. Di Piazza and V. Skvortsov: The essential variation of a function and some convergence theorems.Anal. Math. 22 (1996), 3–12. MR 1384345, 10.1007/BF02342334 |
Reference:
|
[BDS] B. Bongiorno, L. Di Piazza and V. Skvortsov: A new full descriptive characterization of Denjoy-Perron integral.Real Anal. Exchange 21 (1995–96), 656–663. MR 1407278 |
Reference:
|
[2] Z. Buczolich and W. F. Pfeffer: On absolute continuity.J. Math. Anal. Appl. 222 (1998), 64–78. MR 1623859, 10.1006/jmaa.1997.5804 |
Reference:
|
[4] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties.Czechoslovak Math. J. 45 (120) (1995), 79–106. MR 1314532 |
Reference:
|
[5] J. Jarník and J. Kurzweil: Differentiability and integrability in $n$-dimension with respect to $\alpha $-regular intervals.Results Math. 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075 |
Reference:
|
[6] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields.Czechoslovak Math. J. 31 (106) (1981), 614–632. Zbl 0562.26004, MR 0631606 |
Reference:
|
[Mc] E. J. McShane: Unified integration.Academic Press, New York, 1983. Zbl 0551.28001, MR 0740710 |
Reference:
|
[O] K. M. Ostaszewski: Henstock integration in the plane.Mem. Amer. Math. Soc. 253 (1986). Zbl 0596.26005, MR 0856159 |
Reference:
|
[7] W. F. Pfeffer: The Riemann Approach to Integration.Cambridge Univ. Press, Cambridge, 1993. Zbl 0804.26005, MR 1268404 |
Reference:
|
[P] W. F. Pfeffer: On variation of functions of one real variable.Comment. Math. Univ. Carolin. 38 (1997), 61–71. MR 1455470 |
Reference:
|
[8] W. F. Pfeffer: On additive continuous functions of figures.Rend. Instit. Mat. Univ. Trieste, suppl. 29 (1998), 115–133. Zbl 0921.26008, MR 1696024 |
Reference:
|
[9] W. Rudin: Real and complex analysis.McGraw-Hill, New York, 1987. Zbl 0925.00005, MR 0924157 |
Reference:
|
[10] S. Saks: Theory of the integral.Dover, New York, 1964. MR 0167578 |
Reference:
|
[11] B. S. Thomson: Derivates of intervals functions.Mem. Amer. Math. Soc. 452 (1991). MR 1078198 |
. |