Previous |  Up |  Next

Article

Title: Annihilators in normal autometrized algebras (English)
Author: Chajda, Ivan
Author: Rachůnek, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 1
Year: 2001
Pages: 111-120
Summary lang: English
.
Category: math
.
Summary: The concepts of an annihilator and a relative annihilator in an autometrized $l$-algebra are introduced. It is shown that every relative annihilator in a normal autometrized $l$-algebra $\mathcal {A}$ is an ideal of $\mathcal {A}$ and every principal ideal of $\mathcal {A}$ is an annihilator of $\mathcal {A}$. The set of all annihilators of $\mathcal {A}$ forms a complete lattice. The concept of an $I$-polar is introduced for every ideal $I$ of $\mathcal {A}$. The set of all $I$-polars is a complete lattice which becomes a two-element chain provided $I$ is prime. The $I$-polars are characterized as pseudocomplements in the lattice of all ideals of $\mathcal {A}$ containing $I$. (English)
Keyword: autometrized algebra
Keyword: annihilator
Keyword: relative annihilator
Keyword: ideal
Keyword: polar
MSC: 06F05
idZBL: Zbl 1079.06502
idMR: MR1814636
.
Date available: 2009-09-24T10:40:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127630
.
Reference: [1] R. Balbes and P. Dwinger: Distributive Lattices.Univ. of Missouri Press, 1974. MR 0373985
Reference: [2] I. Chajda: Indexed annihilators in lattices.Arch. Math.  (Brno) 31 (1995), 259–262. Zbl 0860.06005, MR 1390584
Reference: [3] M. E. Hansen: Minimal prime ideals in autometrized algebras.Czechoslovak Math. J. 44 (119) (1994), 81–90. Zbl 0814.06011, MR 1257938
Reference: [4] T. Kovář: Normal autometrized $l$-algebras.Math. Slovaca (to appear). MR 1857295
Reference: [5] M. Mandelker: Relative annihilators in lattices.Duke Math. J. 49 (1979), 377–386. MR 0256951
Reference: [6] J. Rachůnek: Prime ideals in autometrized algebras.Czechoslovak Math.  J. 37 (112) (1987), 65–69. MR 0875128
Reference: [7] J. Rachůnek: Polars in autometrized algebras.Czechoslovak Math.  J. 39 (114) (1989), 681–685. MR 1018003
Reference: [8] K. L. N. Swamy: A general theory of autometrized algebras.Math. Ann. 157 (1964), 65–74. Zbl 0135.02602, MR 0170842, 10.1007/BF01362667
Reference: [9] K. L. N. Swamy and N. P. Rao: Ideals in autometrized algebras.J.  Austral. Math. Soc. (Ser. A) 24 (1977), 362–374. MR 0469843, 10.1017/S1446788700020383
.

Files

Files Size Format View
CzechMathJ_51-2001-1_10.pdf 327.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo