Previous |  Up |  Next

Article

Title: On the toughness of cycle permutation graphs (English)
Author: Chao, Chong-Yun
Author: Han, Shaocen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 239-260
Summary lang: English
.
Category: math
.
Summary: Motivated by the conjectures in [11], we introduce the maximal chains of a cycle permutation graph, and we use the properties of maximal chains to establish the upper bounds for the toughness of cycle permutation graphs. Our results confirm two conjectures in [11]. (English)
Keyword: cycle permutation graph
Keyword: toughness
Keyword: maximal chain
MSC: 05C40
MSC: 05C58
idZBL: Zbl 0977.05073
idMR: MR1844308
.
Date available: 2009-09-24T10:42:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127645
.
Reference: [1] D.  Bauer, E.  Schmeichel, and H. J.  Veldman: Some recent results on long cycles in tough graphs.Graph Theory, Combinatorics, and Applications—Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, Y.  Alavi, G.  Chartrand, O. R. Oellermann, and A. J. Schwenk (eds.), John Wiley & Sons, New York, 1991, pp. 113–121. MR 1170772
Reference: [2] D.  Bauer, E.  Schmeichel, and H. J.  Veldman: Cycles in tough graphs-updating the last four years.Graph Theory, Combinatorics, and Applications—Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, Y.  Alavi and A. J.  Schwenk (eds.), Wiley & Sons, New York, 1995, pp. 19–34. MR 1405796
Reference: [3] C. Y.  Chao and S. C.  Han: A note on the toughness of generalized Petersen graphs.J. Math. Res. Exposition 12 (1992), 183–186. MR 1167349
Reference: [4] C. Y. Chao and S. C.  Han: On the classification and toughness of generalized permutation star-graphs.Czechoslovak Math. J. 47 (1997), 431–452. MR 1461423, 10.1023/A:1022455216281
Reference: [5] G.  Chartrand and R. J.  Wilson: The Petersen graph.Graphs and Applications, F.  Harary and J. S.  Maybee (eds.), John Wiley & Sons, 1982, pp. 69–99. MR 0778399
Reference: [6] V.  Chvátal: Tough graphs and hamiltonian circuits.Math. Slovaca 28 (1979), 215–228. MR 0316301
Reference: [7] W.  Döfler: On mapping graphs and permutation graphs.Math. Slovaca 28 (1979), 277–288. MR 0534995
Reference: [8] K.  Ferland: On the toughness of some generalized Petersen graphs.Ars Combin. (1993), 65–88. Zbl 0793.05083, MR 1246901
Reference: [9] W.  Goddard: The toughness of cubic graphs.Graphs Combin. 12 (1996), 17–22. Zbl 0846.05049, MR 1381524, 10.1007/BF01858441
Reference: [10] D.  Guichard, B.  Piazza, and S.  Stueckle: On the vulnerability of permutation graphs of complete and complete bipartite graphs.Ars Combin. 31 (1991), 149–157. MR 1110229
Reference: [11] B.  Piazza, R.  Ringeisen, and S.  Stueckle: On the vulnerability of cycle permutation graphs.Ars Combin. 29 (1990), 289–296. MR 1046114
Reference: [12] W. T.  Tutte: On the algebraic theory of graph colorings.J.  Combin. Theory 1 (1960), 15–50. MR 0194363, 10.1016/S0021-9800(66)80004-2
.

Files

Files Size Format View
CzechMathJ_51-2001-2_3.pdf 418.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo