Previous |  Up |  Next

Article

Title: Sequential convergences on Boolean algebras defined by systems of maximal filters (English)
Author: Frič, Roman
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 261-274
Summary lang: English
.
Category: math
.
Summary: We study sequential convergences defined on a Boolean algebra by systems of maximal filters. We describe the order properties of the system of all such convergences. We introduce the category of 2-generated convergence Boolean algebras and generalize the construction of Novák sequential envelope to such algebras. (English)
Keyword: sequential convergence on Boolean algebras
Keyword: 2-generated convergence
Keyword: 2-embedded Boolean algebra
Keyword: absolutely sequentially closed Boolean algebra
MSC: 06E15
MSC: 54A20
MSC: 54B30
MSC: 54H12
idZBL: Zbl 0976.54003
idMR: MR1844309
.
Date available: 2009-09-24T10:42:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127646
.
Reference: [1] R. N. Ball and A. W.  Hager: Convergences on archimedean lattice-ordered groups with weak unit.Preprint (19$\infty $) (to appear).
Reference: [2] G. Birkhoff: Lattices in applied mathematics.Lattice Theory, Proceedings of Symposia in Pure Mathematics, Vol 2, Providence, 1961, pp. 155–184. Zbl 0101.27201, MR 0177919
Reference: [3] R. Boerger: Ein allgemeiner Zugang zur Mass- und Integrations-theorie.Habilitationsschrift, Fernuniversität, Hagen. (1989).
Reference: [4] G. Boole: An Investigation of the Laws of Thought.Walton and Maberly, London, 1854.
Reference: [5] R. Frič: Sequential structures and probability: categorical reflections.Mathematik-Arbeitspapiere (H.-E.  Porst, ed.), Universität Bremen, Bremen 48 (1997), 157–169.
Reference: [6] R. Frič: Rings of maps: convergence and completion.Preprint.
Reference: [7] R. Frič: A Stone type duality and its applications to probability.Topology Proceedings vol. 22, 1997, pp. 125–137, (Proceedings of the 12th Summer Conference on General Topology and its Applications, North Bay, August 1997). MR 1718934
Reference: [8] P. R. Halmos: The foundations of probability.Amer. Math. Monthly 51 (1944), 497–510. Zbl 0060.28303, MR 0010920
Reference: [9] H. Herrlich, H. and G. E.  Strecker: Category Theory (second edition).Heldermann Verlag, Berlin, 1976. MR 2377903
Reference: [10] J. Jakubík: Sequential convergences in Boolean algebras.Czechoslovak Math.  J. 38 (1988), 520–530. MR 0950306
Reference: [11] J. Jakubík: Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras.Czechoslovak Math. J. 40 (1990), 453–458. MR 1065024
Reference: [12] J. Jakubík: Sequential convergences in lattices.Math. Bohem. 117 (1992), 239–258. MR 1184537
Reference: [13] J. Jakubík: Sequential convergence in distributive lattices.Math. Bohem. 119 (1994), 245–254. MR 1305528
Reference: [14] J. Jakubík: Sequential convergence in $MV$-algebras.Czechoslovak Math. J. 45 (1995), 709–726. MR 1354928
Reference: [15] J. Jakubík: Disjoint sequences in a Boolean algebra.Math. Bohem. 123 (1998), 411–418. MR 1667113
Reference: [16] J. Łoś: On the axiomatic treatment of probability.Colloq. Math. 3 (1955), 125–137. MR 0068759, 10.4064/cm-3-2-125-137
Reference: [17] J. Łoś: Fields of events and their definition in the axiomatic treatment of probability.Studia Logica 9 (1960), 95–115. (Polish) MR 0153036
Reference: [18] J. Novák: Über die eindeutigen stetigen Erweiterungen stetiger Funktionen.Czechoslovak Math.  J. 8 (1958), 344–355. MR 0100826
Reference: [19] J. Novák: On convergence spaces and their seqeuntial envelopes.Czechoslovak Math.  J. 15 (1965), 74–100. MR 0175083
Reference: [20] J. Novák: On sequential envelopes defined by means of certain classes of functions.Czechoslovak Math. J. 18 (1968), 450–456. MR 0232335
Reference: [21] B. Riečan, B. and T. Neubrunn: Integral, measure, and ordering.Kluwer Academic Publishers, Dordrecht-Boston-London, 1997. MR 1489521
Reference: [22] R. Sikorski: Boolean algebras (second edition).Springer-Verlag, Berlin, 1964. MR 0126393
.

Files

Files Size Format View
CzechMathJ_51-2001-2_4.pdf 409.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo