Title:
|
On Rusakov’s $n$-ary $rs$-groups (English) |
Author:
|
Dudek, Wiesław A. |
Author:
|
Stojaković, Zoran |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2001 |
Pages:
|
275-283 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Properties of $n$-ary groups connected with the affine geometry are considered. Some conditions for an $n$-ary $rs$-group to be derived from a binary group are given. Necessary and sufficient conditions for an $n$-ary group $<\theta ,b>$-derived from an additive group of a field to be an $rs$-group are obtained. The existence of non-commutative $n$-ary $rs$-groups which are not derived from any group of arity $m<n$ for every $n\ge 3$, $r>2$ is proved. (English) |
Keyword:
|
$n$-ary group |
Keyword:
|
symmetry |
MSC:
|
20N15 |
MSC:
|
51A25 |
MSC:
|
51D15 |
idZBL:
|
Zbl 0983.20067 |
idMR:
|
MR1844310 |
. |
Date available:
|
2009-09-24T10:42:22Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127647 |
. |
Reference:
|
[11] R. Baer: Linear Algebra and Projective Geometry.Academic Press, New York, 1952. Zbl 0049.38103, MR 0052795 |
Reference:
|
[12] D. Brǎnzei: Structures affines et opérations ternaires.An. Ştiinţ. Univ. Iaşi Sect. I a Mat. (N.S.) 23 (1977), 33–38. MR 0460513 |
Reference:
|
[9] J. Certaine: The ternary operation $(abc)=ab^{-1}c $ of a group.Bull. Amer. Math. Soc. 49 (1943), 869–877. MR 0009953, 10.1090/S0002-9904-1943-08042-1 |
Reference:
|
[6] W. Dörnte: Untersuchungen über einen verallgemeinerten Gruppenbegriff.Math. Z. 29 (1928), 1–19. 10.1007/BF01180515 |
Reference:
|
[2] W. A. Dudek: Remarks on $n$-groups.Demonstratio Math. 13 (1980), 165–181. Zbl 0447.20052, MR 0593068 |
Reference:
|
[3] W. A. Dudek: Varieties of polyadic groups.Filomat 9 (1995), 657–674. Zbl 0860.20056, MR 1385945 |
Reference:
|
[7] W. A. Dudek: On the class of weakly semiabelian polyadic groups.Diskret. Mat. 8 (1996), 40–46. (Russian) Zbl 0868.20055, MR 1422347 |
Reference:
|
[1] W. A. Dudek, B. Gleichgewicht and K. Głazek: A note on the axioms of $n$-groups.Colloquia Math. Soc. János Bolyai, 29. Universal Algebra, Esztergom (Hungary), 1977, pp. 195–202. |
Reference:
|
[8] W. A. Dudek and J. Michalski: On retracts of polyadic groups.Demonstratio Math. 17 (1984), 281–301. MR 0771552 |
Reference:
|
[16] J. I. Kulachgenko: Geometry of parallelograms.Vopr. Algeb. and Prik. Mat., Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 47–64. (Russian) |
Reference:
|
[10] H. Prüfer: Theorie der Abelschen Gruppen.Math. Z. 20 (1924), 166–187. MR 1544670, 10.1007/BF01188079 |
Reference:
|
[4] S. A. Rusakov: A definition of $n$-ary group.Dokl. Akad. Nauk Belarusi 23 (1972), 965–967. (Russian) MR 0555191 |
Reference:
|
[5] S. A. Rusakov: Existence of $n$-ary $rs$-groups.Voprosy Algebry 6 (1992), 89–92. (Russian) MR 1647791 |
Reference:
|
[15] S. A. Rusakov: Vectors of $n$-ary groups. Linear operations and their properties.Vopr. Algeb. and Prik., Mat. Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 10–30. (Russian) |
Reference:
|
[13] W. Szmielew: From the Affine to Euclidean Geometry (Polish edition).PWN Warszawa, 1981. MR 0664205 |
Reference:
|
[14] W. Szmielew: Theory of $n$-ary equivalences and its application to geometry.Dissertationes Math. 191 (1980). |
Reference:
|
[17] L. Takhtajan: On foundation of the generalized Nambu mechanics.Comm. Math. Phys. 160 (1994), 295–315. Zbl 0808.70015, MR 1262199, 10.1007/BF02103278 |
Reference:
|
[18] L. Vainerman and R. Kerner: On special classes of $n$-algebras.J. Math. Phys. 37 (1996), 2553–2565. MR 1385846, 10.1063/1.531526 |
. |