Previous |  Up |  Next

Article

Title: On Rusakov’s $n$-ary $rs$-groups (English)
Author: Dudek, Wiesław A.
Author: Stojaković, Zoran
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 275-283
Summary lang: English
.
Category: math
.
Summary: Properties of $n$-ary groups connected with the affine geometry are considered. Some conditions for an $n$-ary $rs$-group to be derived from a binary group are given. Necessary and sufficient conditions for an $n$-ary group $<\theta ,b>$-derived from an additive group of a field to be an $rs$-group are obtained. The existence of non-commutative $n$-ary $rs$-groups which are not derived from any group of arity $m<n$ for every $n\ge 3$, $r>2$ is proved. (English)
Keyword: $n$-ary group
Keyword: symmetry
MSC: 20N15
MSC: 51A25
MSC: 51D15
idZBL: Zbl 0983.20067
idMR: MR1844310
.
Date available: 2009-09-24T10:42:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127647
.
Reference: [11] R. Baer: Linear Algebra and Projective Geometry.Academic Press, New York, 1952. Zbl 0049.38103, MR 0052795
Reference: [12] D. Brǎnzei: Structures affines et opérations ternaires.An. Ştiinţ. Univ. Iaşi Sect. I a Mat. (N.S.) 23 (1977), 33–38. MR 0460513
Reference: [9] J. Certaine: The ternary operation $(abc)=ab^{-1}c $ of a group.Bull. Amer. Math. Soc. 49 (1943), 869–877. MR 0009953, 10.1090/S0002-9904-1943-08042-1
Reference: [6] W. Dörnte: Untersuchungen über einen verallgemeinerten Gruppenbegriff.Math. Z. 29 (1928), 1–19. 10.1007/BF01180515
Reference: [2] W. A. Dudek: Remarks on $n$-groups.Demonstratio Math. 13 (1980), 165–181. Zbl 0447.20052, MR 0593068
Reference: [3] W. A. Dudek: Varieties of polyadic groups.Filomat 9 (1995), 657–674. Zbl 0860.20056, MR 1385945
Reference: [7] W. A. Dudek: On the class of weakly semiabelian polyadic groups.Diskret. Mat. 8 (1996), 40–46. (Russian) Zbl 0868.20055, MR 1422347
Reference: [1] W. A. Dudek, B. Gleichgewicht and K. Głazek: A note on the axioms of $n$-groups.Colloquia Math. Soc. János Bolyai, 29. Universal Algebra, Esztergom (Hungary), 1977, pp. 195–202.
Reference: [8] W. A. Dudek and J. Michalski: On retracts of polyadic groups.Demonstratio Math. 17 (1984), 281–301. MR 0771552
Reference: [16] J. I. Kulachgenko: Geometry of parallelograms.Vopr. Algeb. and Prik. Mat., Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 47–64. (Russian)
Reference: [10] H. Prüfer: Theorie der Abelschen Gruppen.Math. Z. 20 (1924), 166–187. MR 1544670, 10.1007/BF01188079
Reference: [4] S. A. Rusakov: A definition of $n$-ary group.Dokl. Akad. Nauk Belarusi 23 (1972), 965–967. (Russian) MR 0555191
Reference: [5] S. A. Rusakov: Existence of $n$-ary $rs$-groups.Voprosy Algebry 6 (1992), 89–92. (Russian) MR 1647791
Reference: [15] S. A. Rusakov: Vectors of $n$-ary groups. Linear operations and their properties.Vopr. Algeb. and Prik., Mat. Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 10–30. (Russian)
Reference: [13] W. Szmielew: From the Affine to Euclidean Geometry (Polish edition).PWN Warszawa, 1981. MR 0664205
Reference: [14] W. Szmielew: Theory of $n$-ary equivalences and its application to geometry.Dissertationes Math. 191 (1980).
Reference: [17] L. Takhtajan: On foundation of the generalized Nambu mechanics.Comm. Math. Phys. 160 (1994), 295–315. Zbl 0808.70015, MR 1262199, 10.1007/BF02103278
Reference: [18] L. Vainerman and R. Kerner: On special classes of $n$-algebras.J. Math. Phys. 37 (1996), 2553–2565. MR 1385846, 10.1063/1.531526
.

Files

Files Size Format View
CzechMathJ_51-2001-2_5.pdf 349.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo