Title:
|
On Pták’s generalization of Hankel operators (English) |
Author:
|
Mancera, Carmen H. |
Author:
|
Paúl, Pedro J. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2001 |
Pages:
|
323-342 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In 1997 Pták defined generalized Hankel operators as follows: Given two contractions $T_1\in {\mathcal B}({\mathcal H}_1)$ and $T_2 \in {\mathcal B}({\mathcal H}_2)$, an operator $X \:{\mathcal H}_1 \rightarrow {\mathcal H}_2$ is said to be a generalized Hankel operator if $T_2X=XT_1^*$ and $X$ satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of $T_1$ and $T_2$. This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat hidden connection between the theories (P) and (PV) and we clarify that connection by proving that (P) is more general than (PV), even strictly more general for some $T_1$ and $T_2$, and by studying when they coincide. Then we characterize the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in this way some open problems proposed by Pták. (English) |
Keyword:
|
Toeplitz operators |
Keyword:
|
Hankel operators |
Keyword:
|
minimal isometric dilation |
MSC:
|
46E22 |
MSC:
|
47A20 |
MSC:
|
47B35 |
idZBL:
|
Zbl 0983.47019 |
idMR:
|
MR1844313 |
. |
Date available:
|
2009-09-24T10:42:45Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127650 |
. |
Reference:
|
[1] P. Alegría: Parametrization and Schur algorithm for the integral representation of Hankel forms in $\mathbb{T}^3$.Collect. Math. 43 (1992), 253–272. MR 1252735 |
Reference:
|
[2] J. Arazy, S. D. Fisher, J. Peetre: Hankel operators on weighted Bergman spaces.Amer. J. Math. 110 (1988), 989–1053. MR 0970119, 10.2307/2374685 |
Reference:
|
[3] S. Axler: Bergman spaces and their operators.Surveys of Some Recent Results in Operator Theory, I, J. B. Conway, B. B. Morrel (eds.), Res. Notes Math. vol. 171, Pitman, Boston, London and Melbourne, 1988. Zbl 0681.47006, MR 0958569 |
Reference:
|
[4] S. Axler, J. B. Conway, G. McDonald: Toeplitz operators on Bergman spaces.Canad. J. Math. 34 (1982), 466–483. MR 0658979, 10.4153/CJM-1982-031-1 |
Reference:
|
[5] J. Barría: The commutative product $V^*_{1}V_{2}=V_{2}V_{1}^* $ for isometries $V_{1}$ and $V_{2}$.Indiana Univ. Math. J. 28 (1979), 581–586. Zbl 0428.47019, MR 0542945 |
Reference:
|
[6] E. L. Basor, I. Gohberg: Toeplitz Operators and Related Topics.Operator Theory: Adv. Appl., vol. 71, Birkhäuser-Verlag, Basel, Berlin and Boston, 1994. MR 1300205 |
Reference:
|
[7] C. A. Berger, L. A. Coburn: Toeplitz operators on the Segal-Bargmann space.Trans. Amer. Math. Soc. 301 (1987), 813–829. MR 0882716, 10.1090/S0002-9947-1987-0882716-4 |
Reference:
|
[8] F. F. Bonsall, S. C. Power: A proof of Hartman’s theorem on compact Hankel operators.Math. Proc. Cambridge Philos. Soc. 78 (1975), 447–450. MR 0383133, 10.1017/S0305004100051914 |
Reference:
|
[9] A. Böttcher, B. Silbermann: Analysis of Toeplitz Operators.Springer-Verlag, Berlin, Heidelberg and New York, 1990. MR 1071374 |
Reference:
|
[10] A. Brown, P. R. Halmos: Algebraic properties of Toeplitz operators.J. Reine Angew. Math. 213 (1963), 89–102. MR 0160136 |
Reference:
|
[11] J. B. Conway, J. Duncan, A. L. T. Paterson: Monogenic inverse semigroups and their $C^*$-algebras.Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 13–24. MR 0765485 |
Reference:
|
[12] M. Cotlar, C. Sadosky: Prolongements des formes de Hankel généralisées et formes de Toeplitz.C. R. Acad. Sci. Paris, Ser. I 305 (1987), 167–170. MR 0903954 |
Reference:
|
[13] Ž. Čučković: Commutants of Toeplitz operators on the Bergman space.Pacific J. Math. 162 (1994), 277–285. MR 1251902, 10.2140/pjm.1994.162.277 |
Reference:
|
[14] Ž. Čučković: Commuting Toeplitz operators on the Bergman space of an annulus.Michigan Math. J. 43 (1996), 355–365. MR 1398160, 10.1307/mmj/1029005468 |
Reference:
|
[15] K. R. Davidson: Approximate unitary equivalence of power partial isometries.Proc. Amer. Math. Soc. 91 (1984), 81–84. Zbl 0521.47010, MR 0735569, 10.1090/S0002-9939-1984-0735569-1 |
Reference:
|
[16] A. Devinatz: Toeplitz operators on $H^2$ spaces.Trans. Amer. Math. Soc. 112 (1964), 307–317. MR 0163174 |
Reference:
|
[17] R. G. Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space.Proc. Amer. Math. Soc. 17 (1966), 413–415. Zbl 0146.12503, MR 0203464, 10.1090/S0002-9939-1966-0203464-1 |
Reference:
|
[18] R. G. Douglas: On the operator equation $S^*XT=X$ and related topics.Acta Sci. Math. (Szeged) 30 (1969), 19–32. Zbl 0177.19204, MR 0250106 |
Reference:
|
[19] R. G. Douglas: Banach Algebra Techniques in Operator Theory.Academic Press, New York, 1972. Zbl 0247.47001, MR 0361893 |
Reference:
|
[20] P. R. Halmos: Introduction to Hilbert Space and the Theory of Spectral Multiplicity.Second edition, Chelsea, New York, 1957. Zbl 0079.12404, MR 1653399 |
Reference:
|
[21] P. R. Halmos: A Hilbert Space Problem Book.Second edition, Springer-Verlag, Berlin, Heidelberg and New York, 1982. Zbl 0496.47001, MR 0675952 |
Reference:
|
[22] P. R. Halmos, L. J. Wallen: Powers of partial isometries.J. Math. Mech. 19 (1969/1970), 657–663. MR 0251574 |
Reference:
|
[23] D. A. Herrero: Quasidiagonality, similarity and approximation by nilpotent operators.Indiana Univ. Math. J. 30 (1981), 199–233. Zbl 0497.47010, MR 0604280, 10.1512/iumj.1981.30.30017 |
Reference:
|
[24] T. B. Hoover, A. Lambert: Equivalence of power partial isometries.Duke Math. J. 41 (1974), 855–864. MR 0361872, 10.1215/S0012-7094-74-04185-4 |
Reference:
|
[25] J. Janas, K. Rudol: Toeplitz operators in infinitely many variables.Topics in Operator Theory, Operator Algebras and Applications (Timisoara, 1994), Rom. Acad., Bucharest, 1995, pp. 147–160. MR 1421121 |
Reference:
|
[26] C. H. Mancera, P. J. Paúl: Compact and finite rank operators satisfying a Hankel type equation $T_2X=XT_1^*$.Integral Equations Operator Theory (to appear), . MR 1829281 |
Reference:
|
[27] C. H. Mancera, P. J. Paúl: Properties of generalized Toeplitz operators.Integral Equations Operator Theory (to appear), . MR 1829517 |
Reference:
|
[28] C. H. Mancera, P. J. Paúl: Remarks, examples and spectral properties of generalized Toeplitz operators.Acta Sci. Math. (Szeged) 66 (2000), 737–753. MR 1804222 |
Reference:
|
[29] C. Le Merdy: Formes bilinéaires hankéliennes compactes sur $H^2(X) \times H^2(Y)$.Math. Ann. 293 (1992), 371-384. MR 1166127, 10.1007/BF01444721 |
Reference:
|
[30] G. L. Murphy: Inner functions and Toeplitz operators.Canad. Math. Bull. 36 (1993), 324–331. Zbl 0792.47029, MR 1245817, 10.4153/CMB-1993-045-9 |
Reference:
|
[31] Z. Nehari: On bounded bilinear forms.Ann. Math. 65 (1957), 153–162. Zbl 0077.10605, MR 0082945, 10.2307/1969670 |
Reference:
|
[32] N. K. Nikolskii: Treatise on the Shift Operator.Springer-Verlag, Berlin, Heidelberg and New York, 1986. MR 0827223 |
Reference:
|
[33] L. Page: Bounded and compact vectorial Hankel operators.Trans. Amer. Math. Soc. 150 (1970), 529–539. Zbl 0203.45701, MR 0273449, 10.1090/S0002-9947-1970-0273449-3 |
Reference:
|
[34] V. V. Peller: Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class $\sigma _p$.Integral Equations Operator Theory 5 (1982), 244–272. MR 0647702, 10.1007/BF01694041 |
Reference:
|
[35] S. C. Power: Hankel Operators on Hilbert Space.Res. Notes Math., vol. 64, Pitman, Boston, London and Melbourne, 1982. Zbl 0489.47011, MR 0666699 |
Reference:
|
[36] V. Pták: Factorization of Toeplitz and Hankel operators.Math. Bohem. 122 (1997), 131–145. MR 1460943 |
Reference:
|
[37] V. Pták, P. Vrbová: Operators of Toeplitz and Hankel type.Acta Sci. Math. (Szeged) 52 (1988), 117–140. MR 0957795 |
Reference:
|
[38] V. Pták, P. Vrbová: Lifting intertwining dilations.Integral Equations Operator Theory 11 (1988), 128–147. MR 0920738, 10.1007/BF01236657 |
Reference:
|
[39] M. Rosenblum: Self-adjoint Toeplitz operators.Summer Institute of Spectral Theory and Statistical Mechanics 1965 (1966), Broohhaven National Laboratory, Upton, N. Y. Zbl 0165.47703 |
Reference:
|
[40] B. Sz.-Nagy, C. Foiaş: Harmonic Analysis of Operators on Hilbert Space.Akadémiai Kiadó and North-Holland, Budapest and Amsterdam, 1970. MR 0275190 |
Reference:
|
[41] B. Sz.-Nagy, C. Foiaş: An application of dilation theory to hyponormal operators.Acta Sci. Math. (Szeged) 37 (1975), 155–159. MR 0383131 |
Reference:
|
[42] B. Sz.-Nagy, C. Foiaş: Toeplitz type operators and hyponormality.Dilation Theory, Toeplitz Operators and Other Topics, Operator Theory: Adv. Appl. vol. 11, Birkhäuser-Verlag, Basel, Berlin and Boston, 1983, pp. 371–378. MR 0789650 |
Reference:
|
[43] N. Young: An Introduction to Hilbert Space.Cambridge University Press, Cambridge, 1988. Zbl 0645.46024, MR 0949693 |
Reference:
|
[44] D. Zheng: Hankel operators and Toeplitz operators on the Bergman space.J. Funct. Anal. 83 (1989), 98–120. Zbl 0678.47026, MR 0993443, 10.1016/0022-1236(89)90032-3 |
Reference:
|
[45] D. Zheng: Toeplitz operators and Hankel operators on the Hardy space of the unit sphere.J. Funct. Anal. 149 (1997), 1–24. Zbl 0909.47020, MR 1471097, 10.1006/jfan.1997.3110 |
Reference:
|
[46] K. Zhu: Operator Theory in Function Spaces.Pure Appl, Math. vol. 139, Marcel Dekker, Basel and New York, 1990. Zbl 0706.47019, MR 1074007 |
. |