Previous |  Up |  Next

Article

Title: On Pták’s generalization of Hankel operators (English)
Author: Mancera, Carmen H.
Author: Paúl, Pedro J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 323-342
Summary lang: English
.
Category: math
.
Summary: In 1997 Pták defined generalized Hankel operators as follows: Given two contractions $T_1\in {\mathcal B}({\mathcal H}_1)$ and $T_2 \in {\mathcal B}({\mathcal H}_2)$, an operator $X \:{\mathcal H}_1 \rightarrow {\mathcal H}_2$ is said to be a generalized Hankel operator if $T_2X=XT_1^*$ and $X$ satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of $T_1$ and $T_2$. This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat hidden connection between the theories (P) and (PV) and we clarify that connection by proving that (P) is more general than (PV), even strictly more general for some $T_1$ and $T_2$, and by studying when they coincide. Then we characterize the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in this way some open problems proposed by Pták. (English)
Keyword: Toeplitz operators
Keyword: Hankel operators
Keyword: minimal isometric dilation
MSC: 46E22
MSC: 47A20
MSC: 47B35
idZBL: Zbl 0983.47019
idMR: MR1844313
.
Date available: 2009-09-24T10:42:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127650
.
Reference: [1] P.  Alegría: Parametrization and Schur algorithm for the integral representation of Hankel forms in $\mathbb{T}^3$.Collect. Math. 43 (1992), 253–272. MR 1252735
Reference: [2] J.  Arazy, S. D.  Fisher, J.  Peetre: Hankel operators on weighted Bergman spaces.Amer. J. Math. 110 (1988), 989–1053. MR 0970119, 10.2307/2374685
Reference: [3] S.  Axler: Bergman spaces and their operators.Surveys of Some Recent Results in Operator Theory, I, J. B.  Conway, B. B.  Morrel (eds.), Res. Notes Math. vol. 171, Pitman, Boston, London and Melbourne, 1988. Zbl 0681.47006, MR 0958569
Reference: [4] S.  Axler, J. B.  Conway, G.  McDonald: Toeplitz operators on Bergman spaces.Canad. J. Math. 34 (1982), 466–483. MR 0658979, 10.4153/CJM-1982-031-1
Reference: [5] J.  Barría: The commutative product $V^*_{1}V_{2}=V_{2}V_{1}^* $ for isometries $V_{1}$ and $V_{2}$.Indiana Univ. Math. J. 28 (1979), 581–586. Zbl 0428.47019, MR 0542945
Reference: [6] E. L.  Basor, I.  Gohberg: Toeplitz Operators and Related Topics.Operator Theory: Adv. Appl., vol. 71, Birkhäuser-Verlag, Basel, Berlin and Boston, 1994. MR 1300205
Reference: [7] C. A.  Berger, L. A.  Coburn: Toeplitz operators on the Segal-Bargmann space.Trans. Amer. Math. Soc. 301 (1987), 813–829. MR 0882716, 10.1090/S0002-9947-1987-0882716-4
Reference: [8] F. F.  Bonsall, S. C.  Power: A proof of Hartman’s theorem on compact Hankel operators.Math. Proc. Cambridge Philos. Soc. 78 (1975), 447–450. MR 0383133, 10.1017/S0305004100051914
Reference: [9] A.  Böttcher, B.  Silbermann: Analysis of Toeplitz Operators.Springer-Verlag, Berlin, Heidelberg and New York, 1990. MR 1071374
Reference: [10] A.  Brown, P. R.  Halmos: Algebraic properties of Toeplitz operators.J.  Reine Angew. Math. 213 (1963), 89–102. MR 0160136
Reference: [11] J. B.  Conway, J.  Duncan, A. L. T.  Paterson: Monogenic inverse semigroups and their $C^*$-algebras.Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 13–24. MR 0765485
Reference: [12] M. Cotlar, C. Sadosky: Prolongements des formes de Hankel généralisées et formes de Toeplitz.C.  R. Acad. Sci. Paris, Ser. I 305 (1987), 167–170. MR 0903954
Reference: [13] Ž.  Čučković: Commutants of Toeplitz operators on the Bergman space.Pacific J. Math. 162 (1994), 277–285. MR 1251902, 10.2140/pjm.1994.162.277
Reference: [14] Ž.  Čučković: Commuting Toeplitz operators on the Bergman space of an annulus.Michigan Math. J. 43 (1996), 355–365. MR 1398160, 10.1307/mmj/1029005468
Reference: [15] K. R. Davidson: Approximate unitary equivalence of power partial isometries.Proc. Amer. Math. Soc. 91 (1984), 81–84. Zbl 0521.47010, MR 0735569, 10.1090/S0002-9939-1984-0735569-1
Reference: [16] A.  Devinatz: Toeplitz operators on $H^2$ spaces.Trans. Amer. Math. Soc. 112 (1964), 307–317. MR 0163174
Reference: [17] R. G.  Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space.Proc. Amer. Math. Soc. 17 (1966), 413–415. Zbl 0146.12503, MR 0203464, 10.1090/S0002-9939-1966-0203464-1
Reference: [18] R. G.  Douglas: On the operator equation $S^*XT=X$ and related topics.Acta Sci. Math. (Szeged) 30 (1969), 19–32. Zbl 0177.19204, MR 0250106
Reference: [19] R. G.  Douglas: Banach Algebra Techniques in Operator Theory.Academic Press, New York, 1972. Zbl 0247.47001, MR 0361893
Reference: [20] P. R.  Halmos: Introduction to Hilbert Space and the Theory of Spectral Multiplicity.Second edition, Chelsea, New York, 1957. Zbl 0079.12404, MR 1653399
Reference: [21] P. R.  Halmos: A Hilbert Space Problem Book.Second edition, Springer-Verlag, Berlin, Heidelberg and New York, 1982. Zbl 0496.47001, MR 0675952
Reference: [22] P. R.  Halmos, L. J.  Wallen: Powers of partial isometries.J.  Math. Mech. 19 (1969/1970), 657–663. MR 0251574
Reference: [23] D. A.  Herrero: Quasidiagonality, similarity and approximation by nilpotent operators.Indiana Univ. Math. J. 30 (1981), 199–233. Zbl 0497.47010, MR 0604280, 10.1512/iumj.1981.30.30017
Reference: [24] T. B.  Hoover, A.  Lambert: Equivalence of power partial isometries.Duke Math. J. 41 (1974), 855–864. MR 0361872, 10.1215/S0012-7094-74-04185-4
Reference: [25] J.  Janas, K.  Rudol: Toeplitz operators in infinitely many variables.Topics in Operator Theory, Operator Algebras and Applications (Timisoara, 1994), Rom. Acad., Bucharest, 1995, pp. 147–160. MR 1421121
Reference: [26] C. H. Mancera, P. J. Paúl: Compact and finite rank operators satisfying a Hankel type equation $T_2X=XT_1^*$.Integral Equations Operator Theory (to appear), . MR 1829281
Reference: [27] C. H. Mancera, P. J. Paúl: Properties of generalized Toeplitz operators.Integral Equations Operator Theory (to appear), . MR 1829517
Reference: [28] C. H. Mancera, P. J. Paúl: Remarks, examples and spectral properties of generalized Toeplitz operators.Acta Sci. Math. (Szeged) 66 (2000), 737–753. MR 1804222
Reference: [29] C. Le Merdy: Formes bilinéaires hankéliennes compactes sur $H^2(X) \times H^2(Y)$.Math. Ann. 293 (1992), 371-384. MR 1166127, 10.1007/BF01444721
Reference: [30] G. L.  Murphy: Inner functions and Toeplitz operators.Canad. Math. Bull. 36 (1993), 324–331. Zbl 0792.47029, MR 1245817, 10.4153/CMB-1993-045-9
Reference: [31] Z.  Nehari: On bounded bilinear forms.Ann. Math. 65 (1957), 153–162. Zbl 0077.10605, MR 0082945, 10.2307/1969670
Reference: [32] N. K.  Nikolskii: Treatise on the Shift Operator.Springer-Verlag, Berlin, Heidelberg and New York, 1986. MR 0827223
Reference: [33] L.  Page: Bounded and compact vectorial Hankel operators.Trans. Amer. Math. Soc. 150 (1970), 529–539. Zbl 0203.45701, MR 0273449, 10.1090/S0002-9947-1970-0273449-3
Reference: [34] V. V.  Peller: Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class $\sigma _p$.Integral Equations Operator Theory 5 (1982), 244–272. MR 0647702, 10.1007/BF01694041
Reference: [35] S. C.  Power: Hankel Operators on Hilbert Space.Res. Notes Math., vol. 64, Pitman, Boston, London and Melbourne, 1982. Zbl 0489.47011, MR 0666699
Reference: [36] V.  Pták: Factorization of Toeplitz and Hankel operators.Math. Bohem. 122 (1997), 131–145. MR 1460943
Reference: [37] V.  Pták, P. Vrbová: Operators of Toeplitz and Hankel type.Acta Sci. Math. (Szeged) 52 (1988), 117–140. MR 0957795
Reference: [38] V.  Pták, P. Vrbová: Lifting intertwining dilations.Integral Equations Operator Theory 11 (1988), 128–147. MR 0920738, 10.1007/BF01236657
Reference: [39] M.  Rosenblum: Self-adjoint Toeplitz operators.Summer Institute of Spectral Theory and Statistical Mechanics 1965 (1966), Broohhaven National Laboratory, Upton, N. Y. Zbl 0165.47703
Reference: [40] B.  Sz.-Nagy, C.  Foiaş: Harmonic Analysis of Operators on Hilbert Space.Akadémiai Kiadó and North-Holland, Budapest and Amsterdam, 1970. MR 0275190
Reference: [41] B.  Sz.-Nagy, C.  Foiaş: An application of dilation theory to hyponormal operators.Acta Sci. Math. (Szeged) 37 (1975), 155–159. MR 0383131
Reference: [42] B.  Sz.-Nagy, C.  Foiaş: Toeplitz type operators and hyponormality.Dilation Theory, Toeplitz Operators and Other Topics, Operator Theory: Adv. Appl. vol. 11, Birkhäuser-Verlag, Basel, Berlin and Boston, 1983, pp. 371–378. MR 0789650
Reference: [43] N.  Young: An Introduction to Hilbert Space.Cambridge University Press, Cambridge, 1988. Zbl 0645.46024, MR 0949693
Reference: [44] D.  Zheng: Hankel operators and Toeplitz operators on the Bergman space.J.  Funct. Anal. 83 (1989), 98–120. Zbl 0678.47026, MR 0993443, 10.1016/0022-1236(89)90032-3
Reference: [45] D.  Zheng: Toeplitz operators and Hankel operators on the Hardy space of the unit sphere.J.  Funct. Anal. 149 (1997), 1–24. Zbl 0909.47020, MR 1471097, 10.1006/jfan.1997.3110
Reference: [46] K.  Zhu: Operator Theory in Function Spaces.Pure Appl, Math. vol. 139, Marcel Dekker, Basel and New York, 1990. Zbl 0706.47019, MR 1074007
.

Files

Files Size Format View
CzechMathJ_51-2001-2_8.pdf 469.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo