Previous |  Up |  Next

Article

Title: Oscillatory properties of second order half-linear difference equations (English)
Author: Řehák, Pavel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 303-321
Summary lang: English
.
Category: math
.
Summary: We study oscillatory properties of the second order half-linear difference equation \[ \Delta (r_k|\Delta y_k|^{\alpha -2}\Delta y_k)-p_k|y_{k+1}|^{\alpha -2}y_{k+1}=0, \quad \alpha >1. \qquad \mathrm{(HL)}\] It will be shown that the basic facts of oscillation theory for this equation are essentially the same as those for the linear equation \[ \Delta (r_k\Delta y_k)-p_ky_{k+1}=0. \] We present here the Picone type identity, Reid Roundabout Theorem and Sturmian theory for equation (HL). Some oscillation criteria are also given. (English)
Keyword: half-linear difference equation
Keyword: Picone identity
Keyword: Reid Roundabout Theorem
Keyword: oscillation criteria
MSC: 39A10
MSC: 39A11
idZBL: Zbl 0982.39004
idMR: MR1844312
.
Date available: 2009-09-24T10:42:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127649
.
Reference: [1] R. P. Agarwal: Difference equations and inequalities, theory, methods, and applications, the second edition.Pure and Appl. Math, M. Dekker, New York-Basel-Hong Kong, 2000. MR 1740241
Reference: [2] C. D. Ahlbrandt and A. C. Peterson: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations.Kluwer Academic Publishers, Boston, 1996. MR 1423802
Reference: [3] O. Došlý: Oscillation criteria for higher order Sturm-Liouville difference equations.J.  Differ. Equations Appl. 4 (1998), 425–450. MR 1665162, 10.1080/10236199808808154
Reference: [4] O. Došlý: Oscillation criteria for half-linear second order differential equations.Hiroshima Math. J. 28 (1998), 507–521. MR 1657543, 10.32917/hmj/1206126680
Reference: [5] O. Došlý: A remark on conjugacy of half-linear second order differential equations.Math. Slovaca 50 (2000), 67–79. MR 1764346
Reference: [6] O.  Došlý and P. Řehák: Nonoscillation criteria for second order half-linear difference equations.Comput. Math. Appl, In press.
Reference: [7] Á. Elbert: A half-linear second order differential equations.Colloq. Math. Soc. János Bolayi 30 (1979), 158–180.
Reference: [8] Á. Elbert and T. Kusano: Principal solutions of nonoscillatory half-linear differential equations.Adv. Math. Sci. Appl. (Tokyo) 8 (1998), 745–759. MR 1657164
Reference: [9] J. Jaroš and T. Kusano: A Picone type identity for second order half-linear differential equations.Acta Math. Univ. Comenian. (N. S.) 68 (1999), 137–151. MR 1711081
Reference: [10] W. G. Kelley and A. Peterson: Difference Equations: An Introduction with Applications.Acad. Press, San Diego, 1991. MR 1142573
Reference: [11] J. D. Mirzov: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 3 (1976), 418–425. Zbl 0327.34027, MR 0402184
Reference: [12] J. D. Mirzov: Principial and nonprincipial solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343
Reference: [13] P. Řehák: Half-linear discrete oscillation theory.In: Proceedings of 6th Colloquium on the qualitative theory of DE, Szeged 1999, http://www.math.u-szeged.hu/ejqtde/index.html, EJQTDE, Szeged, 2000, pp. 1–14. MR 1798674
Reference: [14] P.  Řehák: Half-linear dynamic equations on time scales: IVP and oscillatory properties.Submitted.
Reference: [15] P. Řehák: Hartman-Wintner type lemma, oscillation and conjugacy criteria for half-linear difference equations.J. Math. Anal. Appl. 252 (2000), 813–827. MR 1800179, 10.1006/jmaa.2000.7124
Reference: [16] P.  Řehák: Oscillation criteria for second order half-linear difference equations.J. Differ. Equations Appl, In press. MR 1922586
.

Files

Files Size Format View
CzechMathJ_51-2001-2_7.pdf 389.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo