Previous |  Up |  Next

Article

Title: Algebras and spaces of dense constancies (English)
Author: Bella, A.
Author: Martinez, J.
Author: Woodward, S. D.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 449-461
Summary lang: English
.
Category: math
.
Summary: A DC-space (or space of dense constancies) is a Tychonoff space $X$ such that for each $f\in C(X)$ there is a family of open sets $\lbrace U_i\: i\in I\rbrace $, the union of which is dense in $X$, such that $f$, restricted to each $U_i$, is constant. A number of characterizations of DC-spaces are given, which lead to an algebraic generalization of the concept, which, in turn, permits analysis of DC-spaces in the language of archimedean $f$-algebras. One is led naturally to the notion of an almost DC-space (in which the densely constant functions are dense), and it is shown that all metrizable spaces have this property. (English)
Keyword: space and algebra of dense constancy
Keyword: $c$-spectrum
MSC: 06F25
MSC: 16S90
MSC: 54C05
MSC: 54C35
MSC: 54G99
idZBL: Zbl 1079.54506
idMR: MR1851539
.
Date available: 2009-09-24T10:44:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127661
.
Reference: [1] F. W.  Anderson: Lattice-ordered rings of quotients.Canad. J.  Math. 17 (1965), 434–448. Zbl 0134.27101, MR 0174600, 10.4153/CJM-1965-044-7
Reference: [2] M.  Anderson and T.  Feil: Lattice-ordered groups. An introduction.Reidel Texts in the Math. Sciences, Kluwer, Dordrecht, 1988. MR 0937703
Reference: [3] B.  Banaschewski: Maximal rings of quotients of semi-simple commutative rings.Arch. Math. 16 (1965), 414–420. Zbl 0135.07901, MR 0199214, 10.1007/BF01220051
Reference: [4] A.  Bella, A. W.  Hager, J.  Martinez, S.  Woodward and H.  Zhou: Specker spaces and their absolutes, I.Topology Appl. 72 (1996), 259–271. MR 1406312, 10.1016/0166-8641(96)00026-0
Reference: [5] A.  Bigard, K.  Keimel, S.  Wolfenstein: Groupes et Anneaux Réticulés. LNM, Vol.  608.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0552653
Reference: [6] R.  Bleier: The orthocompletion of a lattice-ordered group.Indag. Math. 38 (1976), 1–7. Zbl 0329.06013, MR 0401581, 10.1016/1385-7258(76)90000-7
Reference: [7] L.  Gillman, M.  Jerison: Rings of Continuous Functions. GTM Vol.  43.Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0407579
Reference: [8] A.  Hager: Minimal covers of topological spaces.Ann. New York Acad. Sci.; Papers on general topology and related category theory and topological algebra Alg. Vol. 552 (1989), 44–59. Zbl 0881.54025, MR 1020773
Reference: [9] J.  Lambek: Lectures on Rings and Modules.Blaisdell Publ. Co., Waltham, 1966. Zbl 0143.26403, MR 0419493
Reference: [10] J.  Martinez: The maximal ring of quotients of an $f$-ring.Algebra Universalis 33 (1995), 355–369. MR 1322778, 10.1007/BF01190704
Reference: [11] J.  Martinez and S.  Woodward: Specker spaces and their absolutes, II.Algebra Universalis 35 (1996), 333–341. MR 1387909, 10.1007/BF01197178
Reference: [12] J.  Porter, R. G.  Woods: Extensions and Absolutes of Hausdorff Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1988. MR 0918341
Reference: [13] Y.  Utumi: On quotient rings.Osaka Math.  J. 8 (1956), 1–18. Zbl 0070.26601, MR 0078966
.

Files

Files Size Format View
CzechMathJ_51-2001-3_1.pdf 382.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo