Title:
|
Algebras and spaces of dense constancies (English) |
Author:
|
Bella, A. |
Author:
|
Martinez, J. |
Author:
|
Woodward, S. D. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
3 |
Year:
|
2001 |
Pages:
|
449-461 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A DC-space (or space of dense constancies) is a Tychonoff space $X$ such that for each $f\in C(X)$ there is a family of open sets $\lbrace U_i\: i\in I\rbrace $, the union of which is dense in $X$, such that $f$, restricted to each $U_i$, is constant. A number of characterizations of DC-spaces are given, which lead to an algebraic generalization of the concept, which, in turn, permits analysis of DC-spaces in the language of archimedean $f$-algebras. One is led naturally to the notion of an almost DC-space (in which the densely constant functions are dense), and it is shown that all metrizable spaces have this property. (English) |
Keyword:
|
space and algebra of dense constancy |
Keyword:
|
$c$-spectrum |
MSC:
|
06F25 |
MSC:
|
16S90 |
MSC:
|
54C05 |
MSC:
|
54C35 |
MSC:
|
54G99 |
idZBL:
|
Zbl 1079.54506 |
idMR:
|
MR1851539 |
. |
Date available:
|
2009-09-24T10:44:09Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127661 |
. |
Reference:
|
[1] F. W. Anderson: Lattice-ordered rings of quotients.Canad. J. Math. 17 (1965), 434–448. Zbl 0134.27101, MR 0174600, 10.4153/CJM-1965-044-7 |
Reference:
|
[2] M. Anderson and T. Feil: Lattice-ordered groups. An introduction.Reidel Texts in the Math. Sciences, Kluwer, Dordrecht, 1988. MR 0937703 |
Reference:
|
[3] B. Banaschewski: Maximal rings of quotients of semi-simple commutative rings.Arch. Math. 16 (1965), 414–420. Zbl 0135.07901, MR 0199214, 10.1007/BF01220051 |
Reference:
|
[4] A. Bella, A. W. Hager, J. Martinez, S. Woodward and H. Zhou: Specker spaces and their absolutes, I.Topology Appl. 72 (1996), 259–271. MR 1406312, 10.1016/0166-8641(96)00026-0 |
Reference:
|
[5] A. Bigard, K. Keimel, S. Wolfenstein: Groupes et Anneaux Réticulés. LNM, Vol. 608.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0552653 |
Reference:
|
[6] R. Bleier: The orthocompletion of a lattice-ordered group.Indag. Math. 38 (1976), 1–7. Zbl 0329.06013, MR 0401581, 10.1016/1385-7258(76)90000-7 |
Reference:
|
[7] L. Gillman, M. Jerison: Rings of Continuous Functions. GTM Vol. 43.Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0407579 |
Reference:
|
[8] A. Hager: Minimal covers of topological spaces.Ann. New York Acad. Sci.; Papers on general topology and related category theory and topological algebra Alg. Vol. 552 (1989), 44–59. Zbl 0881.54025, MR 1020773 |
Reference:
|
[9] J. Lambek: Lectures on Rings and Modules.Blaisdell Publ. Co., Waltham, 1966. Zbl 0143.26403, MR 0419493 |
Reference:
|
[10] J. Martinez: The maximal ring of quotients of an $f$-ring.Algebra Universalis 33 (1995), 355–369. MR 1322778, 10.1007/BF01190704 |
Reference:
|
[11] J. Martinez and S. Woodward: Specker spaces and their absolutes, II.Algebra Universalis 35 (1996), 333–341. MR 1387909, 10.1007/BF01197178 |
Reference:
|
[12] J. Porter, R. G. Woods: Extensions and Absolutes of Hausdorff Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1988. MR 0918341 |
Reference:
|
[13] Y. Utumi: On quotient rings.Osaka Math. J. 8 (1956), 1–18. Zbl 0070.26601, MR 0078966 |
. |