Previous |  Up |  Next

Article

Title: A comparison on the commutative neutrix convolution of distributions and the exchange formula (English)
Author: Kiliçman, Adem
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 463-471
Summary lang: English
.
Category: math
.
Summary: Let $\tilde{f}$, $\tilde{g}$ be ultradistributions in $\mathcal Z^{\prime }$ and let $\tilde{f}_n = \tilde{f} * \delta _n$ and $\tilde{g}_n = \tilde{g} * \sigma _n$ where $\lbrace \delta _n \rbrace $ is a sequence in $\mathcal Z$ which converges to the Dirac-delta function $\delta $. Then the neutrix product $\tilde{f} \diamond \tilde{g}$ is defined on the space of ultradistributions $\mathcal Z^{\prime }$ as the neutrix limit of the sequence $\lbrace {1 \over 2}(\tilde{f}_n \tilde{g} + \tilde{f} \tilde{g}_n)\rbrace $ provided the limit $\tilde{h}$ exist in the sense that \[ \mathop {\mathrm N\text{-}lim}_{n\rightarrow \infty }{1 \over 2} \langle \tilde{f}_n \tilde{g} +\tilde{f} \tilde{g}_n, \psi \rangle = \langle \tilde{h}, \psi \rangle \] for all $\psi $ in $\mathcal Z$. We also prove that the neutrix convolution product $f \mathbin {\diamondsuit \!\!\!\!*\,}g$ exist in $\mathcal D^{\prime }$, if and only if the neutrix product $\tilde{f} \diamond \tilde{g}$ exist in $\mathcal Z^{\prime }$ and the exchange formula \[ F(f \mathbin {\diamondsuit \!\!\!\!*\,}g) = \tilde{f} \diamond \tilde{g} \] is then satisfied. (English)
Keyword: distributions
Keyword: ultradistributions
Keyword: delta-function
Keyword: neutrix limit
Keyword: neutrix product
Keyword: neutrix convolution
Keyword: exchange formula
MSC: 46F10
idZBL: Zbl 1079.46514
idMR: MR1851540
.
Date available: 2009-09-24T10:44:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127662
.
Reference: [kn:cor] J.G. van der Corput: Introduction to the neutrix calculus.J. Analyse Math. 7 (1959–60), 291–398. MR 0124678
Reference: [kn:fi] B. Fisher: Neutrices and the convolution of distributions.Zb. Rad. Prirod.-Mat. Fak., Ser. Mat., Novi Sad 17 (1987), 119–135. MR 0939303
Reference: [kn:li] B. Fisher and Li Chen Kuan: A commutative neutrix convolution product of distributions.Zb. Rad. Prirod.-Mat. Fak., Ser. Mat., Novi Sad (1) 23 (1993), 13–27. MR 1319771
Reference: [kn:ozli] B. Fisher, E. Özçaḡ and L. C. Kuan: A commutative neutrix convolution of distributions and exchange formula.Arch. Math. 28 (1992), 187–197. MR 1222286
Reference: [kn:gel] I.M. Gel’fand and G.E. Shilov: Generalized functions, Vol. I.Academic Press, 1964. MR 0166596
Reference: [kn:jon] D.S. Jones: The convolution of generalized functions.Quart. J. Math. Oxford Ser. (2) 24 (1973), 145–163. Zbl 0256.46054, MR 0336325, 10.1093/qmath/24.1.145
Reference: [kn:tre] F. Treves: Topological vector spaces, distributions and kernels.Academic Press, 1970. MR 0225131
.

Files

Files Size Format View
CzechMathJ_51-2001-3_2.pdf 316.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo