Previous |  Up |  Next

Article

Keywords:
Phragmén-Lindelöf type theorems; quasiregular mappings; isoperimetry
Summary:
The rate of growth of the energy integral of a quasiregular mapping $f\:\mathcal X\rightarrow \mathcal Y$ is estimated in terms of a special isoperimetric condition on $\mathcal Y$. The estimate leads to new Phragmén-Lindelöf type theorems.
References:
[1] L.  Ahlfors: Zur Theorie Überlagerungsflächen. Acta Math. 65 (1935), 157–194. DOI 10.1007/BF02420945 | MR 1555403
[2] V. A.  Botvinnik: Phragmén-Lindelöf’s theorems for space mappings with boundary distortion. Dissertation, Volgograd (1983), 1–96.
[3] Yu. D.  Burago and V. A.  Zalgaller: Geometric Inequalities. Nauka, Moscow, 1980. MR 0602952
[4] C. Croke: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) Ser. 13 (1980), 419–435. MR 0608287 | Zbl 0465.53032
[5] H.  Federer: Geometric Measure Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1969. MR 0257325 | Zbl 0176.00801
[6] S.  Granlund, P.  Lindqvist, and O.  Martio: Phragmén–Lindelöf’s and Lindelöf’s theorem. Ark. Mat. 23 (1985), 103–128. DOI 10.1007/BF02384420 | MR 0800175
[7] M.  Gromov: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82 (1985), 307–347. DOI 10.1007/BF01388806 | MR 0809718
[8] J.  Heinonen, T.  Kilpeläinen and O.  Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Clarendon Press, 1993. MR 1207810
[9] D.  Hoffman and J.  Spruck: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math. 27 (1974), 715–727. DOI 10.1002/cpa.3160270601 | MR 0365424
[10] I. Holopainen and S. Rickman: Classification of Riemannian manifolds in nonlinear potential theory. Potential Analysis 2 (1993), 37–66. DOI 10.1007/BF01047672 | MR 1245236
[11] A. S.  Kronrod: On functions of two variables. Uspekhi Mat. Nauk 5 (1950), 24–134. (Russian) MR 0034826
[12] O.  Martio, V.  Miklyukov and M.  Vuorinen: Differential forms and quasiregular mappings on Riemannian manifolds. XVIth Rolf Nevanlinna Colloquium (I. Laine and O. Martio, eds.), Walter de Gruyter &Co, 1996, pp. 151–159. MR 1427080
[13] O.  Martio, V.  Miklyukov and M.  Vuorinen: Phragmén – Lindelöf’s principle for quasiregular mappings and isoperimetry. Dokl. Akad. Nauk 347 (1996), 303–305. (Russian) MR 1393057
[14] V. M.  Miklyukov: Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion. Mat. Sb. 11 (1980), 42–66. (Russian) MR 0560463
[15] P.  Pansu: Quasiconformal mappings and manifolds of negative curvature. Curvature and Topology of Riemannian Manifolds. Proceed. 17th Int. Taniguchi Symp., Katata, Japan, Aug. 26-31, 1985. MR 0859587 | Zbl 0592.53031
[16] E.  Phragmén and E.  Lindelöf: Sur une extension d’un principe classique de l’analyse et sur quelques propriétés des fonctions monogenènes dans le voisinage d’un point singulier. Acta Math. 31 (1908), 381–406. DOI 10.1007/BF02415450 | MR 1555044
[17] S.  Rickman and M.  Vuorinen: On the order of quasiregular mappings. Ann. Acad. Sci. Fenn. Math. 7 (1982), 221–231. DOI 10.5186/aasfm.1982.0727 | MR 0686641
[18] M.  Vuorinen: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math., 1319, Springer-Verlag. MR 0950174 | Zbl 0646.30025
[19] S. T. Yau: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. 8 (1975), 487–507. MR 0397619 | Zbl 0325.53039
Partner of
EuDML logo