Previous |  Up |  Next

Article

Title: Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry (English)
Author: Martio, O.
Author: Miklyukov, V.
Author: Vuorinen, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 585-608
Summary lang: English
.
Category: math
.
Summary: The rate of growth of the energy integral of a quasiregular mapping $f\:\mathcal X\rightarrow \mathcal Y$ is estimated in terms of a special isoperimetric condition on $\mathcal Y$. The estimate leads to new Phragmén-Lindelöf type theorems. (English)
Keyword: Phragmén-Lindelöf type theorems
Keyword: quasiregular mappings
Keyword: isoperimetry
MSC: 30C65
MSC: 35J60
idZBL: Zbl 1079.30508
idMR: MR1851549
.
Date available: 2009-09-24T10:45:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127671
.
Reference: [1] L.  Ahlfors: Zur Theorie Überlagerungsflächen.Acta Math. 65 (1935), 157–194. MR 1555403, 10.1007/BF02420945
Reference: [2] V. A.  Botvinnik: Phragmén-Lindelöf’s theorems for space mappings with boundary distortion.Dissertation, Volgograd (1983), 1–96.
Reference: [3] Yu. D.  Burago and V. A.  Zalgaller: Geometric Inequalities.Nauka, Moscow, 1980. MR 0602952
Reference: [4] C. Croke: Some isoperimetric inequalities and eigenvalue estimates.Ann. Sci. École Norm. Sup. (4) Ser. 13 (1980), 419–435. Zbl 0465.53032, MR 0608287
Reference: [5] H.  Federer: Geometric Measure Theory.Springer-Verlag, Berlin-Heidelberg-New York, 1969. Zbl 0176.00801, MR 0257325
Reference: [6] S.  Granlund, P.  Lindqvist, and O.  Martio: Phragmén–Lindelöf’s and Lindelöf’s theorem.Ark. Mat. 23 (1985), 103–128. MR 0800175, 10.1007/BF02384420
Reference: [7] M.  Gromov: Pseudoholomorphic curves in symplectic manifolds.Invent. Math. 82 (1985), 307–347. MR 0809718, 10.1007/BF01388806
Reference: [8] J.  Heinonen, T.  Kilpeläinen and O.  Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations.Clarendon Press, 1993. MR 1207810
Reference: [9] D.  Hoffman and J.  Spruck: Sobolev and isoperimetric inequalities for Riemannian submanifolds.Comm. Pure Appl. Math. 27 (1974), 715–727. MR 0365424, 10.1002/cpa.3160270601
Reference: [10] I. Holopainen and S. Rickman: Classification of Riemannian manifolds in nonlinear potential theory.Potential Analysis 2 (1993), 37–66. MR 1245236, 10.1007/BF01047672
Reference: [11] A. S.  Kronrod: On functions of two variables.Uspekhi Mat. Nauk 5 (1950), 24–134. (Russian) MR 0034826
Reference: [12] O.  Martio, V.  Miklyukov and M.  Vuorinen: Differential forms and quasiregular mappings on Riemannian manifolds.XVIth Rolf Nevanlinna Colloquium (I. Laine and O. Martio, eds.), Walter de Gruyter &Co, 1996, pp. 151–159. MR 1427080
Reference: [13] O.  Martio, V.  Miklyukov and M.  Vuorinen: Phragmén – Lindelöf’s principle for quasiregular mappings and isoperimetry.Dokl. Akad. Nauk 347 (1996), 303–305. (Russian) MR 1393057
Reference: [14] V. M.  Miklyukov: Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion.Mat. Sb. 11 (1980), 42–66. (Russian) MR 0560463
Reference: [15] P.  Pansu: Quasiconformal mappings and manifolds of negative curvature.Curvature and Topology of Riemannian Manifolds. Proceed. 17th Int. Taniguchi Symp., Katata, Japan, Aug. 26-31, 1985. Zbl 0592.53031, MR 0859587
Reference: [16] E.  Phragmén and E.  Lindelöf: Sur une extension d’un principe classique de l’analyse et sur quelques propriétés des fonctions monogenènes dans le voisinage d’un point singulier.Acta Math. 31 (1908), 381–406. MR 1555044, 10.1007/BF02415450
Reference: [17] S.  Rickman and M.  Vuorinen: On the order of quasiregular mappings.Ann. Acad. Sci. Fenn. Math. 7 (1982), 221–231. MR 0686641, 10.5186/aasfm.1982.0727
Reference: [18] M.  Vuorinen: Conformal Geometry and Quasiregular Mappings.Lecture Notes in Math., 1319, Springer-Verlag. Zbl 0646.30025, MR 0950174
Reference: [19] S. T. Yau: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold.Ann. Sci. École Norm. Sup. 8 (1975), 487–507. Zbl 0325.53039, MR 0397619, 10.24033/asens.1299
.

Files

Files Size Format View
CzechMathJ_51-2001-3_11.pdf 466.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo