Previous |  Up |  Next

Article

Title: Distinguished completion of a direct product of lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 661-671
Summary lang: English
.
Category: math
.
Summary: The distinguished completion $E(G)$ of a lattice ordered group $G$ was investigated by Ball [1], [2], [3]. An analogous notion for $MV$-algebras was dealt with by the author [7]. In the present paper we prove that if a lattice ordered group $G$ is a direct product of lattice ordered groups $G_i$ $(i\in I)$, then $E(G)$ is a direct product of the lattice ordered groups $E(G_i)$. From this we obtain a generalization of a result of Ball [3]. (English)
Keyword: lattice ordered group
Keyword: distinguished completion
Keyword: direct product
MSC: 06F15
idZBL: Zbl 1079.06505
idMR: MR1851554
.
Date available: 2009-09-24T10:46:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127676
.
Reference: [1] R. N.  Ball: The distinguished completion of a lattice ordered group.In: Algebra Carbondale 1980, Lecture Notes Math. 848, Springer Verlag, 1980, pp. 208–217. MR 0613187
Reference: [2] R. N. Ball: Completions of $\ell $-groups.In: Lattice Ordered Groups, A. M. W.  Glass and W. C. Holland (eds.), Kluwer, Dordrecht-Boston-London, 1989, pp. 142–177. MR 1036072
Reference: [3] R. N. Ball: Distinguished extensions of a lattice ordered group.Algebra Univ. 35 (1996), 85–112. Zbl 0842.06012, MR 1360533, 10.1007/BF01190971
Reference: [4] P.  Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [5] J.  Jakubík: Generalized Dedekind completion of a lattice ordered group.Czechoslovak Math. J. 28 (1978), 294–311. MR 0552650
Reference: [6] J.  Jakubík: Maximal Dedekind completion of an abelian lattice ordered group.Czechoslovak Math. J. 28 (1978), 611–631. MR 0506435
Reference: [7] J. Jakubík: Distinguished extensions of an $MV$-algebra.Czechoslovak Math. J. 49 (1999), 867–876. MR 1746712, 10.1023/A:1022469521480
.

Files

Files Size Format View
CzechMathJ_51-2001-3_16.pdf 306.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo