Previous |  Up |  Next

Article

Title: Continuity of stochastic convolutions (English)
Author: Brzeźniak, Zdzisław
Author: Peszat, Szymon
Author: Zabczyk, Jerzy
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 4
Year: 2001
Pages: 679-684
Summary lang: English
.
Category: math
.
Summary: Let $B$ be a Brownian motion, and let $\mathcal C_{\mathrm p}$ be the space of all continuous periodic functions $f\:\mathbb{R}\rightarrow \mathbb{R}$ with period 1. It is shown that the set of all $f\in \mathcal C_{\mathrm p}$ such that the stochastic convolution $X_{f,B}(t)= \int _0^tf(t-s)\mathrm{d}B(s)$, $t\in [0,1]$ does not have a modification with bounded trajectories, and consequently does not have a continuous modification, is of the second Baire category. (English)
Keyword: stochastic convolutions
Keyword: continuity of Gaussian processes
Keyword: Gaussian trigonometric series
MSC: 60G15
MSC: 60G17
MSC: 60G50
MSC: 60H05
idZBL: Zbl 1001.60056
idMR: MR1864035
.
Date available: 2009-09-24T10:46:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127679
.
Reference: [1] T. Bjork, Y. Kabanov and W.  Runggaldier: Bond market structure in the presence of marked point processes.Math. Finance 7 (1997), 211–239. MR 1446647, 10.1111/1467-9965.00031
Reference: [2] K. De  Leeuw, J.-P.  Kahane and Y.  Katznelson: Sur les coefficients de Fourier des fonctions continues.C. R.  Acad. Sci. Paris Sér. A-B 285 (1977), A1001–A1003. MR 0510870
Reference: [3] M.  Errami and F.  Russo: Covariation de convolution de martingales.C.  R.  Acad. Sci. Paris Sér. I Math. 326 (1998), 601–606. MR 1649341, 10.1016/S0764-4442(98)85014-3
Reference: [4] B.  Goldys and M.  Musiela: On Stochastic Convolutions.Report S98–19, School of Mathematics, University of New South Wales, Sydney, 1998.
Reference: [5] D.  Heath, A.  Jarrow and A.  Morton: Bond pricing and the term structure of interest rates: A new methodology for contingent claim valuation.Econometrica 60 (1992), 77–105. 10.2307/2951677
Reference: [6] J.-P.  Kahane: Some Random Series of Functions.2nd ed., Cambridge University Press, Cambridge, 1985. Zbl 0571.60002, MR 0833073
Reference: [7] J.-P.  Kahane: Baire’s category theorem and trigonometric series.J.  Anal. Math. 80 (2000), 143–182. Zbl 0961.42001, MR 1771526, 10.1007/BF02791536
Reference: [8] M.  Musiela: Stochastic PDEs and term structure models.Journees Internationales des Finance, IGR-AFFI, La Boule, 1993.
Reference: [9] G.  Pisier: A remarkable homogeneous Banach algebra.Israel J.  Math. 34 (1979), 38–44. Zbl 0428.46035, MR 0571394, 10.1007/BF02761823
.

Files

Files Size Format View
CzechMathJ_51-2001-4_2.pdf 341.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo