Previous |  Up |  Next

Article

Title: Some results about dissipativity of Kolmogorov operators (English)
Author: Prato, Giuseppe Da
Author: Tubaro, Luciano
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 4
Year: 2001
Pages: 685-699
Summary lang: English
.
Category: math
.
Summary: Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator. (English)
Keyword: Kolmogorov equations
Keyword: invatiant measures
Keyword: $m$-dissipativity
MSC: 35K57
MSC: 37L40
MSC: 47B25
MSC: 47N50
MSC: 70H15
MSC: 81S20
idZBL: Zbl 0996.47028
idMR: MR1864036
.
Date available: 2009-09-24T10:46:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127680
.
Reference: [1] S.  Cerrai: A Hille-Yosida theorem for weakly continuous semigroups.Semigroup Forum 49 (1994), 349–367. Zbl 0817.47048, MR 1293091, 10.1007/BF02573496
Reference: [2] S. Cerrai: Weakly continuous semigroups in the space of functions with polynomial growth.Dynam. Systems Appl. 4 (1995), 351–371. Zbl 0830.47032, MR 1348505
Reference: [3] S.  Cerrai and F. Gozzi: Strong solutions of Cauchy problems associated to weakly continuous semigroups.Differential Integral Equations (1995), 465–486. MR 1306569
Reference: [4] G. Da Prato and L. Tubaro: Self-adjointness of some infinite dimensional elliptic operators and application to stochastic quantization.Probab. Theory Relat. Fields 118 (2000), 131–145. MR 1785456, 10.1007/PL00008739
Reference: [5] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems.Cambridge University Press, Cambridge, 1996. MR 1417491
Reference: [6] A. Eberle: Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics Vol. 1718.Springer-Verlag, Berlin, 1999. MR 1734956
Reference: [7] B.  Goldys and M. Kocan: Diffusion semigroups in spaces of continuous functions with mixed topology.J. Differential Equations 173 (2001), 17–39. MR 1836243, 10.1006/jdeq.2000.3918
Reference: [8] V. Liskevich and M. Röckner: Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization.Ann. Scuola Norm. Sup. Pisa Cl. Sci.  (4) 27 (1999), 69–91. MR 1658889
Reference: [9] Z. M. Ma and M. Röckner: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms.Springer-Verlag, Berlin, 1992. MR 1214375
Reference: [10] E.  Priola: $\pi $-semigroups and applications. Preprint No.  9 of the Scuola Normale Superiore di Pisa.1998.
.

Files

Files Size Format View
CzechMathJ_51-2001-4_3.pdf 382.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo