Previous |  Up |  Next

Article

Title: Hypercontractivity of solutions to Hamilton-Jacobi equations (English)
Author: Goldys, Beniamin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 4
Year: 2001
Pages: 733-743
Summary lang: English
.
Category: math
.
Summary: We show that solutions to some Hamilton-Jacobi Equations associated to the problem of optimal control of stochastic semilinear equations enjoy the hypercontractivity property. (English)
Keyword: Hamilton-Jacobi equation
Keyword: stochastic semilinear equation
Keyword: invariant measure
Keyword: Log-Sobolev inequality
Keyword: hypercontractivity
MSC: 49L20
MSC: 60H15
MSC: 93E20
idZBL: Zbl 1001.60066
idMR: MR1864039
.
Date available: 2009-09-24T10:46:51Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127683
.
Reference: [1] D. Bakry: L’hypercontractivité et son utilisation en théorie des semigroupes.Lectures on Probability Theory (Saint-Flour, 1992). Lecture Notes in Math. Vol. 1581, Springer, Berlin, 1994, pp. 1–114. Zbl 0856.47026, MR 1307413
Reference: [2] P. Cannarsa and G. Da Prato: Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions.J.  Funct. Anal. 90 (1990), 27–47. MR 1047576, 10.1016/0022-1236(90)90079-Z
Reference: [3] A. Chojnowska-Michalik: Transition semigroups for stochastic semilinear equations on Hilbert spaces.Dissertationes Math. (Rozprawy Mat.) 396 (2001), 1–59. Zbl 0991.60049, MR 1841090, 10.4064/dm396-0-1
Reference: [4] A. Chojnowska-Michalik and B. Goldys: Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces.Probab. Theory Related Fields 102 (1995), 331–356. MR 1339737, 10.1007/BF01192465
Reference: [5] A. Chojnowska-Michalik and B. Goldys: Nonsymmetric Ornstein-Uhlenbeck generators.Infinite Dimensional Stochastic Analysis (Amsterdam, 1999), R. Neth. Acad. Arts Sci., Amsterdam, 2000, pp. 99–116. MR 1831413
Reference: [6] G. Da Prato, A. Debussche and B. Goldys: Invariant measures of non-symmetric dissipative stochastic systems.(to appear).
Reference: [7] G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions.Cambridge University Press, Cambridge, 1992. MR 1207136
Reference: [8] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems.Cambridge University Press, Cambridge, 1996. MR 1417491
Reference: [9] B. Goldys and F. Gozzi: Second order parabolic HJ Equations in Hilbert Spaces: $L^2$ Approach.Submitted.
Reference: [10] B. Goldys and B. Maslowski: Ergodic control of semilinear stochastic equations and the Hamilton-Jacobi equation.J. Math. Anal. Appl. 234 (1999), 592–631. MR 1689410, 10.1006/jmaa.1999.6387
Reference: [11] F. Gozzi: Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem.Comm. Partial Differential Equations 20 (1995), 775–826. Zbl 0842.49021, MR 1326907, 10.1080/03605309508821115
Reference: [12] L. Gross: Logarithmic Sobolev inequalities.Amer. J.  Math. 97 (1975), 1061–1083. Zbl 0359.46038, MR 0420249, 10.2307/2373688
Reference: [13] R. Phelps: Gaussian null sets and differentiability of Lipschitz maps on Banach Spaces.Pacific J.  Math. 77 (1978), 523–531. MR 0510938, 10.2140/pjm.1978.77.523
.

Files

Files Size Format View
CzechMathJ_51-2001-4_6.pdf 347.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo