Title:
|
On stochastic differential equations with locally unbounded drift (English) |
Author:
|
Gyöngy, István |
Author:
|
Martínez, Teresa |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
4 |
Year:
|
2001 |
Pages:
|
763-783 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the regularizing effect of the noise on differential equations with irregular coefficients. We present existence and uniqueness theorems for stochastic differential equations with locally unbounded drift. (English) |
Keyword:
|
stochastic differential equations |
Keyword:
|
Krylov’s estimate |
MSC:
|
60H10 |
MSC:
|
60H40 |
idZBL:
|
Zbl 1001.60060 |
idMR:
|
MR1864041 |
. |
Date available:
|
2009-09-24T10:47:06Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127685 |
. |
Reference:
|
[1] R. Aebi: Diffusions with singular drift related to wave functions.Probab. Theory Related Fields 96 (1996), 107–121. MR 1222367 |
Reference:
|
[2] A. M. Davie: Uniqueness of solutions of stochastic differential equations.2001, preprint. Zbl 1139.60028, MR 2377011 |
Reference:
|
[3] H. J. Engelbert and W. Schmidt: On exponential local martingales connected with diffusion processes.Math. Nachr. 119 (1984), 97–115. MR 0774179, 10.1002/mana.19841190108 |
Reference:
|
[4] H. J. Engelbert and W. Schmidt: On one-dimensional stochastic differential equations with generalized drift. Stochastic Differential Systems (Marseille-Luminy, 1984).Lecture Notes in Control and Information Sci. Vol. 69, Springer, Berlin-New York, 1985, pp. 143–155. MR 0798317 |
Reference:
|
[5] I. Gyöngy: On stochastic differential equations with irregular coefficients.Technical Report Series of the Laboratory for Research in Statistics and Probability 91 (1986). |
Reference:
|
[6] I. Gyöngy and N. V. Krylov: Stochastic partial differential equations with unbounded coefficients and applications III.Stochastics Stochastics Rep. 40 (1992), 77–115. MR 1275128, 10.1080/17442509208833782 |
Reference:
|
[7] I. Gyöngy and N. V. Krylov: Existence of strong solutions for Itô’s stochastic equations via approximations.Probab. Theory Related Fields 105 (1996), 143–158. MR 1392450 |
Reference:
|
[8] H. Kaneko and S. Nakao: A note on approximation for stochastic differential equations. Séminaire de Probabilités XXII.Lecture Notes in Mathematics Vol. 1321, Springer, Berlin-New York, 1988, pp. 155–162. MR 0960522 |
Reference:
|
[9] N. V. Krylov: On some estimates of the distribution of stochastic integrals.Izv. Akad. Nauk SSSR Ser. Math. 38 (1974), 228–248. (Russian) MR 0345206 |
Reference:
|
[10] N. V. Krylov: Estimates of the maximum of the solution of a parabolic equation and estimates of the distribution of a semimartingale.Mat. Sb. (N.S.) 130 (172) (1986), 207–221. (Russian) MR 0854972 |
Reference:
|
[11] N. V. Krylov: Controlled Diffusion Processes.Nauka, Moscow, 1977, English transl.: Springer-Verlag, New York-Berlin, 1980. MR 0601776 |
Reference:
|
[12] O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural’ceva: Linear and Quasilinear Equations of Parabolic Type.Nauka, Moscow, 1967, English transl.: American Mathematical Society, Providence, R.I., 1968. |
Reference:
|
[13] R. S. Liptser and A. N. Shiryaev: Statistics of Random Processes I.Nauka, Moscow, 1974, English transl.: Springer-Verlag, New York-Heidelberg, 1977. |
Reference:
|
[14] P. A. Meyer and W. A. Zheng: Quelques résultats de “mécanique stochastique”.Séminaire de Probabilités XVIII. Lecture Notes in Mathematics Vol. 1059, Springer, Berlin-New York, 1984, pp. 223–244. MR 0770964 |
Reference:
|
[15] P. A. Meyer and W. A. Zheng: Sur la construction des certaines diffusions.Séminaire de Probabilités XX. Lecture Notes in Mathematics Vol. 1204, Springer, Berlin-New York, 1986, pp. 334–337. MR 0942027 |
Reference:
|
[16] M. Nagasawa: Transformations of diffusions and Schrödinger processes.Probab. Theory Related Fields 82 (1989), 109-136. MR 0997433, 10.1007/BF00340014 |
Reference:
|
[17] M. Nagasawa, H. Tanaka: Diffusion process in a singular mean-drift-field.Z. Wahrsch. Verw. Gebiete 68 (1985), 247–269. MR 0771466, 10.1007/BF00532640 |
Reference:
|
[18] N. I. Portenko: Generalized Diffusion Processes.Naukova Dumka, Kiev, 1982, English transl.: American Mathematical Society, Providence, R.I., 1990. Zbl 0727.60089, MR 1104660 |
Reference:
|
[19] A. V. Skorohod: Studies in the Theory of Random Processes.Izdat. Kiev. Univ., Kiev, 1961, English transl.: Addison Wesley Publ. Co., Reading, Mass., 1965. MR 0185620 |
Reference:
|
[20] D. W. Stroock, S. R. S. Varadhan: Multidimensional Diffusion Processes.Springer-Verlag, Berlin, 1979. MR 0532498 |
Reference:
|
[21] W. Stummer: The Novikov and entropy conditions of multidimensional diffusion processes with singular drift.Probab. Theory Related Fields 97 (1993), 515–542. Zbl 0794.60055, MR 1246978, 10.1007/BF01192962 |
Reference:
|
[22] A. Ju. Veretennikov: On the strong solutions of stochastic differential equations.Theory Probab. Appl. 24 (1979), 354–366. Zbl 0418.60061, MR 0532447 |
Reference:
|
[23] A. Yu. Veretennikov: Parabolic equations and stochastic Itô differential equations with discontinuous coefficients in time.Mat. Zametki 31 (1982), 549–557. (Russian) MR 0657716 |
Reference:
|
[24] A. K. Zvonkin: A transformation of the phase space of a diffusion process that will remove the drift.Mat. Sb. (N.S.) 93 (135) (1974), 129–149. (Russian) MR 0336813 |
. |