Previous |  Up |  Next

Article

Title: A note on maximal inequality for stochastic convolutions (English)
Author: Hausenblas, Erika
Author: Seidler, Jan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 4
Year: 2001
Pages: 785-790
Summary lang: English
.
Category: math
.
Summary: Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \[ \int ^t_0 S(t-s)\psi (s)\mathrm{d}W(s) \] driven by a Wiener process $W$ in a Hilbert space in the case when the semigroup $S(t)$ is of contraction type. (English)
Keyword: infinite-dimensional Wiener process
Keyword: stochastic convolution
Keyword: maximal inequality
MSC: 60H05
MSC: 60H15
idZBL: Zbl 1001.60065
idMR: MR1864042
.
Date available: 2009-09-24T10:47:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127686
.
Reference: [1] Z.  Brzeźniak: On stochastic convolution in Banach spaces and applications.Stochastics Stochastics Rep. 61 (1997), 245–295. MR 1488138, 10.1080/17442509708834122
Reference: [2] Z.  Brzeźniak and S.  Peszat: Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces.Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), Amer.  Math.  Soc., Providence, 2000, pp. 55–64. MR 1803378
Reference: [3] G. Da Prato, M.  Iannelli and L.  Tubaro: Semi-linear stochastic differential equations in Hilbert spaces.Boll. Un. Mat. Ital.  A (5) 16 (1979), 168–177. MR 0530145
Reference: [4] G. Da Prato, S.  Kwapień and J.  Zabczyk: Regularity of solutions of linear stochastic equations in Hilbert spaces.Stochastics 23 (1987), 1–23. MR 0920798
Reference: [5] G. Da Prato and J.  Zabczyk: A note on stochastic convolution.Stochastic Anal. Appl. 10 (1992), 143–153. MR 1154532, 10.1080/07362999208809260
Reference: [6] G.  Da Prato and J.  Zabczyk: Stochastic Equations in Infinite Dimensions.Cambridge University Press, Cambridge, 1992. MR 1207136
Reference: [7] E. B.  Davies: Quantum Theory of Open Systems.Academic Press, London, 1976. Zbl 0388.46044, MR 0489429
Reference: [8] D. Gątarek: A note on nonlinear stochastic equations in Hilbert spaces.Statist. Probab. Lett. 17 (1993), 387–394. MR 1237785, 10.1016/0167-7152(93)90259-L
Reference: [9] A. Ichikawa: Some inequalities for martingales and stochastic convolutions.Stochastic Anal. Appl. 4 (1986), 329–339. Zbl 0622.60066, MR 0857085, 10.1080/07362998608809094
Reference: [10] P. Kotelenez: A submartingale type inequality with applications to stochastic evolution equations.Stochastics 8 (1982), 139–151. Zbl 0495.60066, MR 0686575, 10.1080/17442508208833233
Reference: [11] P. Kotelenez: A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations.Stochastic Anal. Appl. 2 (1984), 245–265. Zbl 0552.60058, MR 0757338, 10.1080/07362998408809036
Reference: [12] J. Seidler: Da Prato-Zabczyk’s maximal inequality revisited I.Math. Bohem. 118 (1993), 67–106. Zbl 0785.35115, MR 1213834
Reference: [13] J. Seidler and T. Sobukawa: Exponential integrability of stochastic convolutions.Submitted.
Reference: [14] B. Sz.-Nagy: Sur les contractions de l’espace de Hilbert.Acta Sci. Math. Szeged 15 (1953), 87–92. Zbl 0052.12203, MR 0058128
Reference: [15] B. Sz.-Nagy: Transformations de l’espace de Hilbert, fonctions de type positif sur un groupe.Acta Sci. Math. Szeged 15 (1954), 104–114. MR 0060740
Reference: [16] B. Sz.-Nagy and C. Foiaş: Harmonic Analysis of Operators on Hilbert Space.North-Holland, Amsterdam, 1970. MR 0275190
Reference: [17] L. Tubaro: An estimate of Burkholder type for stochastic processes defined by the stochastic integral.Stochastic Anal. Appl. 2 (1984), 187–192. Zbl 0539.60056, MR 0746435, 10.1080/07362998408809032
.

Files

Files Size Format View
CzechMathJ_51-2001-4_9.pdf 345.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo