Title:
|
A note on maximal inequality for stochastic convolutions (English) |
Author:
|
Hausenblas, Erika |
Author:
|
Seidler, Jan |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
4 |
Year:
|
2001 |
Pages:
|
785-790 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \[ \int ^t_0 S(t-s)\psi (s)\mathrm{d}W(s) \] driven by a Wiener process $W$ in a Hilbert space in the case when the semigroup $S(t)$ is of contraction type. (English) |
Keyword:
|
infinite-dimensional Wiener process |
Keyword:
|
stochastic convolution |
Keyword:
|
maximal inequality |
MSC:
|
60H05 |
MSC:
|
60H15 |
idZBL:
|
Zbl 1001.60065 |
idMR:
|
MR1864042 |
. |
Date available:
|
2009-09-24T10:47:13Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127686 |
. |
Reference:
|
[1] Z. Brzeźniak: On stochastic convolution in Banach spaces and applications.Stochastics Stochastics Rep. 61 (1997), 245–295. MR 1488138, 10.1080/17442509708834122 |
Reference:
|
[2] Z. Brzeźniak and S. Peszat: Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces.Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), Amer. Math. Soc., Providence, 2000, pp. 55–64. MR 1803378 |
Reference:
|
[3] G. Da Prato, M. Iannelli and L. Tubaro: Semi-linear stochastic differential equations in Hilbert spaces.Boll. Un. Mat. Ital. A (5) 16 (1979), 168–177. MR 0530145 |
Reference:
|
[4] G. Da Prato, S. Kwapień and J. Zabczyk: Regularity of solutions of linear stochastic equations in Hilbert spaces.Stochastics 23 (1987), 1–23. MR 0920798 |
Reference:
|
[5] G. Da Prato and J. Zabczyk: A note on stochastic convolution.Stochastic Anal. Appl. 10 (1992), 143–153. MR 1154532, 10.1080/07362999208809260 |
Reference:
|
[6] G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions.Cambridge University Press, Cambridge, 1992. MR 1207136 |
Reference:
|
[7] E. B. Davies: Quantum Theory of Open Systems.Academic Press, London, 1976. Zbl 0388.46044, MR 0489429 |
Reference:
|
[8] D. Gątarek: A note on nonlinear stochastic equations in Hilbert spaces.Statist. Probab. Lett. 17 (1993), 387–394. MR 1237785, 10.1016/0167-7152(93)90259-L |
Reference:
|
[9] A. Ichikawa: Some inequalities for martingales and stochastic convolutions.Stochastic Anal. Appl. 4 (1986), 329–339. Zbl 0622.60066, MR 0857085, 10.1080/07362998608809094 |
Reference:
|
[10] P. Kotelenez: A submartingale type inequality with applications to stochastic evolution equations.Stochastics 8 (1982), 139–151. Zbl 0495.60066, MR 0686575, 10.1080/17442508208833233 |
Reference:
|
[11] P. Kotelenez: A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations.Stochastic Anal. Appl. 2 (1984), 245–265. Zbl 0552.60058, MR 0757338, 10.1080/07362998408809036 |
Reference:
|
[12] J. Seidler: Da Prato-Zabczyk’s maximal inequality revisited I.Math. Bohem. 118 (1993), 67–106. Zbl 0785.35115, MR 1213834 |
Reference:
|
[13] J. Seidler and T. Sobukawa: Exponential integrability of stochastic convolutions.Submitted. |
Reference:
|
[14] B. Sz.-Nagy: Sur les contractions de l’espace de Hilbert.Acta Sci. Math. Szeged 15 (1953), 87–92. Zbl 0052.12203, MR 0058128 |
Reference:
|
[15] B. Sz.-Nagy: Transformations de l’espace de Hilbert, fonctions de type positif sur un groupe.Acta Sci. Math. Szeged 15 (1954), 104–114. MR 0060740 |
Reference:
|
[16] B. Sz.-Nagy and C. Foiaş: Harmonic Analysis of Operators on Hilbert Space.North-Holland, Amsterdam, 1970. MR 0275190 |
Reference:
|
[17] L. Tubaro: An estimate of Burkholder type for stochastic processes defined by the stochastic integral.Stochastic Anal. Appl. 2 (1984), 187–192. Zbl 0539.60056, MR 0746435, 10.1080/07362998408809032 |
. |