Previous |  Up |  Next

Article

Title: Generalized analytic spaces, completeness and fragmentability (English)
Author: Holický, Petr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 4
Year: 2001
Pages: 791-818
Summary lang: English
.
Category: math
.
Summary: Classical analytic spaces can be characterized as projections of Polish spaces. We prove analogous results for three classes of generalized analytic spaces that were introduced by Z. Frolík, D. Fremlin and R. Hansell. We use the technique of complete sequences of covers. We explain also some relations of analyticity to certain fragmentability properties of topological spaces endowed with an additional metric. (English)
Keyword: scattered-$K$-analytic space
Keyword: isolated-$K$-analytic space
Keyword: Čech analytic space
Keyword: $\sigma $-fragmented space
Keyword: complete sequence of covers
MSC: 54C35
MSC: 54D15
MSC: 54F65
MSC: 54H05
idZBL: Zbl 0995.54035
idMR: MR1864043
.
Date available: 2009-09-24T10:47:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127687
.
Reference: [1] Z.  Frolík: Distinguished subclasses of Čech-analytic spaces (research announcement).Comment. Math. Univ. Carolin. 25 (1984), 368–370.
Reference: [2] Z.  Frolík: Generalizations of the $G_\delta $-property of complete metric spaces.Czechoslovak Math.  J. 10 (85) (1960), 359–379. MR 0116305
Reference: [3] Z.  Frolík: A survey of separable descriptive theory of sets and spaces.Czechoslovak Math.  J. 20 (1970), 406–467. MR 0266757
Reference: [4] Z.  Frolík: Čech-analytic spaces (research announcement).Comment. Math. Univ. Carolin. 25 (1984), 367–368.
Reference: [5] R. W.  Hansell: Descriptive Topology.Recent Progress in Recent Topology, North-Holland, Amsterdam, London, New York, Tokyo, 1992, pp. 275–315. Zbl 0805.54036, MR 1229129
Reference: [6] R. W.  Hansell: Descriptive sets and the topology of nonseparable Banach spaces.Serdica Math.  J. 27 (2001), 1–66. Zbl 0982.46012, MR 1828793
Reference: [7] R. W.  Hansell: Compact perfect sets in weak analytic spaces.Topology Appl. 41 (1991), 65–72. Zbl 0759.54016, MR 1129699, 10.1016/0166-8641(91)90101-Q
Reference: [8] P.  Holický: Čech analytic and almost $K$-descriptive spaces.Czechoslovak Math.  J. 43 (1993), 451–466. MR 1249614
Reference: [9] P.  Holický: Zdeněk Frolík and the descriptive theory of sets and spaces.Acta Univ. Carolin. Math. Phys. 32 (1991), 5–21. MR 1146762
Reference: [10] P.  Holický: Luzin theorems for scattered-$K$-analytic spaces and Borel measures on them.Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), 395–413. MR 1428772
Reference: [11] J. E.  Jayne, I.  Namioka and C. A.  Rogers: Topological properties of Banach spaces.Proc. London Math. Soc. 66 (1993), 651–672. MR 1207552
Reference: [12] J. E.  Jayne, I. Namioka and C. A.  Rogers: Properties like the Radon-Nikodým property. Preprint.(1989).
Reference: [13] J. E.  Jayne and C. A.  Rogers: $K$-analytic sets.Analytic Sets, Academic Press, London, 1980, pp. 1–181. MR 0608794
Reference: [14] I.  Namioka: Separate continuity and joint continuity.Pacific J.  Math. 51 (1974), 515–531. Zbl 0294.54010, MR 0370466, 10.2140/pjm.1974.51.515
Reference: [15] I.  Namioka and R.  Pol: $\sigma $-fragmentability and analyticity.Mathematika 43 (1996), 172–181. MR 1401716, 10.1112/S0025579300011670
Reference: [16] I.  Namioka and R.  Pol: $\sigma $-fragmentability of mappings into  $C_p(K)$.Topology Appl. 89 (1998), 249–263. MR 1645164, 10.1016/S0166-8641(97)00217-4
.

Files

Files Size Format View
CzechMathJ_51-2001-4_10.pdf 504.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo