Title:
|
Multiresolution analysis and Radon measures on a locally compact Abelian group (English) |
Author:
|
Galindo, Félix |
Author:
|
Sanz, Javier |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
51 |
Issue:
|
4 |
Year:
|
2001 |
Pages:
|
859-871 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A multiresolution analysis is defined in a class of locally compact abelian groups $G$. It is shown that the spaces of integrable functions $\mathcal L^p(G)$ and the complex Radon measures $M(G)$ admit a simple characterization in terms of this multiresolution analysis. (English) |
Keyword:
|
multiresolution analysis |
Keyword:
|
Radon measures |
Keyword:
|
topological groups |
MSC:
|
22B99 |
MSC:
|
28A33 |
MSC:
|
43A15 |
idZBL:
|
Zbl 0997.43003 |
idMR:
|
MR1864047 |
. |
Date available:
|
2009-09-24T10:47:49Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127691 |
. |
Reference:
|
[1] J. Diestel and J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys, Number 15, AMS.Providence, Rhode Island, 1977. MR 0453964 |
Reference:
|
[2] N. Dunford and J. T. Schwartz: Linear Operators. Part I: General Theory.Wiley Interscience, New York, 1988. MR 1009162 |
Reference:
|
[3] R. E. Edwards and G. I. Gaudry: Littlewood-Paley and Multiplier Theory.Springer-Verlag, Berlin, 1977. MR 0618663 |
Reference:
|
[4] F. Galindo: Procesos semiperiódicos multidimensionales. Multiplicadores y funciones de transferencia.Ph.D. Thesis, Universidad de Valladolid, Valladolid, 1995. |
Reference:
|
[5] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis I.Springer-Verlag, Berlin, 1963. |
Reference:
|
[6] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis II.Springer-Verlag, Berlin, 1970. MR 0262773 |
Reference:
|
[7] W. C. Lang: Orthogonal wavelets on the Cantor dyadic group.SIAM J. Math. Anal. 27 (1996), 305–312. Zbl 0841.42014, MR 1373159, 10.1137/S0036141093248049 |
Reference:
|
[8] R. Larsen: An Introduction to the Theory of Multipliers.Springer-Verlag, Berlin, 1971. Zbl 0213.13301, MR 0435738 |
Reference:
|
[9] P. G. Lemarié: Base d’ondelettes sur les groupes de Lie stratifiés.Bull. Soc. Math. France 117 (1989), 211–232. MR 1015808, 10.24033/bsmf.2118 |
Reference:
|
[10] S. G. Mallat: Multiresolution approximations and wavelet orthonormal bases of $L^2(\mathbb{R})$.Trans. Amer. Math. Soc. 315 (1989), 69–87. Zbl 0686.42018, MR 1008470 |
Reference:
|
[11] Y. Meyer: Wavelets and operators.Cambridge University Press, Cambridge, 1992. Zbl 0776.42019, MR 1228209 |
Reference:
|
[12] M. Núñez: Multipliers on the space of semiperiodic sequences.Trans. Amer. Math. Soc. 291 (1984), 801–811. MR 0800264 |
Reference:
|
[13] G. E. Shilov and B. L. Gurevich: Integral, Measure and Derivative: a unified approach.Dover, New York, 1977. MR 0466463 |
. |