Previous |  Up |  Next

Article

Title: Multiresolution analysis and Radon measures on a locally compact Abelian group (English)
Author: Galindo, Félix
Author: Sanz, Javier
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 4
Year: 2001
Pages: 859-871
Summary lang: English
.
Category: math
.
Summary: A multiresolution analysis is defined in a class of locally compact abelian groups $G$. It is shown that the spaces of integrable functions $\mathcal L^p(G)$ and the complex Radon measures $M(G)$ admit a simple characterization in terms of this multiresolution analysis. (English)
Keyword: multiresolution analysis
Keyword: Radon measures
Keyword: topological groups
MSC: 22B99
MSC: 28A33
MSC: 43A15
idZBL: Zbl 0997.43003
idMR: MR1864047
.
Date available: 2009-09-24T10:47:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127691
.
Reference: [1] J. Diestel and J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys, Number 15, AMS.Providence, Rhode Island, 1977. MR 0453964
Reference: [2] N.  Dunford and J. T.  Schwartz: Linear Operators. Part I: General Theory.Wiley Interscience, New York, 1988. MR 1009162
Reference: [3] R. E. Edwards and G. I. Gaudry: Littlewood-Paley and Multiplier Theory.Springer-Verlag, Berlin, 1977. MR 0618663
Reference: [4] F. Galindo: Procesos semiperiódicos multidimensionales. Multiplicadores y funciones de transferencia.Ph.D. Thesis, Universidad de Valladolid, Valladolid, 1995.
Reference: [5] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis I.Springer-Verlag, Berlin, 1963.
Reference: [6] E.  Hewitt and K. A.  Ross: Abstract Harmonic Analysis II.Springer-Verlag, Berlin, 1970. MR 0262773
Reference: [7] W. C.  Lang: Orthogonal wavelets on the Cantor dyadic group.SIAM J.  Math. Anal. 27 (1996), 305–312. Zbl 0841.42014, MR 1373159, 10.1137/S0036141093248049
Reference: [8] R.  Larsen: An Introduction to the Theory of Multipliers.Springer-Verlag, Berlin, 1971. Zbl 0213.13301, MR 0435738
Reference: [9] P. G.  Lemarié: Base d’ondelettes sur les groupes de Lie stratifiés.Bull. Soc. Math. France 117 (1989), 211–232. MR 1015808, 10.24033/bsmf.2118
Reference: [10] S. G.  Mallat: Multiresolution approximations and wavelet orthonormal bases of $L^2(\mathbb{R})$.Trans. Amer. Math. Soc. 315 (1989), 69–87. Zbl 0686.42018, MR 1008470
Reference: [11] Y.  Meyer: Wavelets and operators.Cambridge University Press, Cambridge, 1992. Zbl 0776.42019, MR 1228209
Reference: [12] M.  Núñez: Multipliers on the space of semiperiodic sequences.Trans. Amer. Math. Soc. 291 (1984), 801–811. MR 0800264
Reference: [13] G. E. Shilov and B. L.  Gurevich: Integral, Measure and Derivative: a unified approach.Dover, New York, 1977. MR 0466463
.

Files

Files Size Format View
CzechMathJ_51-2001-4_14.pdf 374.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo