| Title:
             | 
A constructive integral equivalent to the integral of Kurzweil (English) | 
| Author:
             | 
Federson, M. | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
52 | 
| Issue:
             | 
2 | 
| Year:
             | 
2002 | 
| Pages:
             | 
365-367 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We slightly modify the definition of the Kurzweil integral and prove that it still gives the same integral. (English) | 
| Keyword:
             | 
Kurzweil integral | 
| Keyword:
             | 
generalized Riemann integral | 
| MSC:
             | 
26A39 | 
| MSC:
             | 
26B99 | 
| MSC:
             | 
26E20 | 
| MSC:
             | 
46G10 | 
| idZBL:
             | 
Zbl 1011.26008 | 
| idMR:
             | 
MR1905443 | 
| . | 
| Date available:
             | 
2009-09-24T10:51:49Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127724 | 
| . | 
| Reference:
             | 
[1] R. Henstock: The General Theory of Integration.Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656 | 
| Reference:
             | 
[2] J. Kurzweil: Generalized ordinary differential equations and continuous dependance on a parameter.Czechoslovak Math. J. 7 (1957), 418–446. MR 0111875 | 
| Reference:
             | 
[3] J. Kurzweil and J. Jarník: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals.Res. Math. 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075 | 
| . |