Previous |  Up |  Next

Article

Keywords:
quasi-divisor theory; ordered group; valuations; $t$-ideal
Summary:
For an order embedding $G\overset{h}{\rightarrow }{\rightarrow }\Gamma $ of a partly ordered group $G$ into an $l$-group $\Gamma $ a topology $\mathcal T_{\widehat{W}}$ is introduced on $\Gamma $ which is defined by a family of valuations $W$ on $G$. Some density properties of sets $h(G)$, $h(X_t)$ and $(h(X_t)\setminus \lbrace h(g_1),\dots ,h(g_n)\rbrace )$ ($X_t$ being $t$-ideals in $G$) in the topological space $(\Gamma ,\mathcal T_{\widehat{W}})$ are then investigated, each of them being equivalent to the statement that $h$ is a strong theory of quasi-divisors.
References:
[1] I. Arnold: Ideale in kommutativen Halbgruppen. Rec. Math. Soc. Math. Moscow 36 (1929), 401–407. (German)
[2] M. Anderson and T. Feil: Lattice-ordered Groups. D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. MR 0937703
[3] K. E. Aubert: Divisors of finite character. Ann. Mat. Pura Appl. 33 (1983), 327–361. MR 0725032 | Zbl 0533.20034
[4] K. E. Aubert: Localizations dans les systémes d’idéaux. C. R. Acad. Sci. Paris 272 (1971), 465–468. MR 0277511
[5] Z. I. Borevich and I. R. Shafarevich: Number Theory. Academic Press, New York, 1966. MR 0195803
[6] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[7] L. G. Chouinard: Krull semigroups and divisor class group. Canad. J. Math. 33 (1981), 1459–1468. MR 0645239
[8] A. Geroldinger and J. Močkoř: Quasi-divisor theories and generalizations of Krull domains. J.  Pure Appl. Algebra 102 (1995), 289–311. DOI 10.1016/0022-4049(94)00088-Z | MR 1354993
[9] R. Gilmer: Multiplicative Ideal Theory. M.  Dekker, Inc., New York, 1972. MR 0427289 | Zbl 0248.13001
[10] M. Griffin: Rings of Krull type. J. Reine Angew. Math. 229 (1968), 1–27. MR 0220726 | Zbl 0173.03504
[11] M. Griffin: Some results on $v$-multiplication rings. Canad. J. Math. 19 (1967), 710-722. MR 0215830 | Zbl 0148.26701
[12] P. Jaffard: Les systémes d’idéaux. Dunod, Paris, 1960. MR 0114810 | Zbl 0101.27502
[13] J. Močkoř: Groups of Divisibility. D. Reidl Publ.  Co., Dordrecht, 1983. MR 0720862
[14] J. Močkoř and J. Alajbegovic: Approximation Theorems in Commutative Algebra. Kluwer Academic publ., Dordrecht, 1992. MR 1207134
[15] J. Močkoř and A. Kontolatou: Groups with quasi-divisor theory. Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. MR 1223185
[16] J. Močkoř and A. Kontolatou: Divisor class groups of ordered subgroups. Acta Math. Inform. Univ. Ostraviensis 1 (1993), 37–46. MR 1250925
[17] J. Močkoř and A. Kontolatou: Quasi-divisors theory of partly ordered groups. Grazer Math. Ber. 318 (1992), 81–98. MR 1227404
[18] J. Močkoř: $t$-valuation and theory of quasi-divisors. J. Pure Appl. Algebra 120 (1997), 51–65. DOI 10.1016/S0022-4049(96)00059-X | MR 1466097
[19] J. Močkoř and A.  Kontolatou: Some remarks on Lorezen $r$-group of partly ordered group. Czechoslovak Math.  J. 46(121) (1996), 537–552. MR 1408304
[20] J. Močkoř: Divisor class group and the theory of quasi-divisors. To appear. MR 1765996
[21] J. Ohm: Semi-valuations and groups of divisibility. Canad. J. Math. 21 (1969), 576-591. MR 0242819 | Zbl 0177.06501
[22] L. Skula: Divisorentheorie einer Halbgruppe. Math.  Z. 114 (1970), 113–120. MR 0262401 | Zbl 0177.03202
[23] L. Skula: On $c$-semigroups. Acta Arith. 31 (1976), 247–257. MR 0444817 | Zbl 0303.13014
Partner of
EuDML logo