Previous |  Up |  Next

Article

Title: The McShane, PU and Henstock integrals of Banach valued functions (English)
Author: Di Piazza, Luisa
Author: Marraffa, V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 3
Year: 2002
Pages: 609-633
Summary lang: English
.
Category: math
.
Summary: Some relationships between the vector valued Henstock and McShane integrals are investigated. An integral for vector valued functions, defined by means of partitions of the unity (the PU-integral) is studied. In particular it is shown that a vector valued function is McShane integrable if and only if it is both Pettis and PU-integrable. Convergence theorems for the Henstock variational and the PU integrals are stated. The families of multipliers for the Henstock and the Henstock variational integrals of vector valued functions are characterized. (English)
Keyword: Pettis
Keyword: McShane
Keyword: PU and Henstock integrals
Keyword: variational integrals
Keyword: multipliers
MSC: 26A39
MSC: 26B30
MSC: 28B05
MSC: 46G10
idZBL: Zbl 1011.28007
idMR: MR1923266
.
Date available: 2009-09-24T10:54:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127748
.
Reference: [1] B.  Bongiorno: Relatively weakly compact sets in the Denjoy space.J. Math. Study 27 (1994), 37–43. Zbl 1045.26502, MR 1318256
Reference: [2] B.  Bongiorno and L.  Di Piazza: Convergence theorem for generalized Riemann-Stieltjes integrals.Real Anal. Exchange 17 (1991–92), 339–361. MR 1147373
Reference: [3] B.  Bongiorno, M.  Giertz and W.  Pfeffer: Some nonabsolutely convergent integrals in the real line.Boll. Un. Mat. Ital. (7) 6-B (1992), 371–402. MR 1171108
Reference: [4] B.  Bongiorno and W.  Pfeffer: A concept of absolute continuity and a Riemann type integral.Comment. Math. Univ. Carolin. 33 (1992), 184–196. MR 1189651
Reference: [5] J. K. Brooks: Representation of weak and strong integrals in Banach spaces.Proc. Nat. Acad. Sci., U.S.A. (1969), 266–279. MR 0274697
Reference: [6] S.  Cao: The Henstock integral for Banach-valued functions.SEA Bull. Math. 16 (1992), 35–40. Zbl 0749.28007, MR 1173605
Reference: [7] D.  Caponetti and V.  Marraffa: An integral in the real line defined by BV  partitions of unity.Atti Sem. Mat. Fis. Univ. Modena XlII (1994), 69–82. MR 1282323
Reference: [8] J.  Diestel and J. J.  Uhl Jr.: Vector Mesures. Mathematical Surveys, No.15.Amer. Math. Soc., 1977. MR 0453964
Reference: [9] W.  Congxin and Y.  Xiaobo: A Riemann-type definition of the Bochner integral.J. Math. Study 27 (1994), 32–36. MR 1318255
Reference: [10] D. H.  Fremlin: On the Henstock and McShane integrals of vector-valued functions.Illinois J.  Math. 38 (1994), 471–479. MR 1269699, 10.1215/ijm/1255986726
Reference: [11] D. H.  Fremlin and J.  Mendoza: On the integration of vector-valued functions.Illinois J. Math. 38 (1994), 127–147. MR 1245838, 10.1215/ijm/1255986891
Reference: [12] R.  Gordon: Riemann integration in Banach spaces.Rocky Mountain J.  Math. 21 (1991), 923–949. Zbl 0764.28008, MR 1138145, 10.1216/rmjm/1181072923
Reference: [13] E.  Hille and R. S.  Phillips: Functional Analysis and Semigroups.AMS Colloquium Publications, Vol. XXXI, 1957.
Reference: [14] R. C.  James: Weak compactness and reflexivity.Israel J.  Math. 2 (1964), 101–119. Zbl 0127.32502, MR 0176310, 10.1007/BF02759950
Reference: [15] J.  Kurzweil, J.  Mawhin and W. F.  Pfeffer: An integral defined by approximating BV partitions of unity.Czechoslovak Math.  J. 41(116) (1991), 695–712. MR 1134958
Reference: [16] P. Y.  Lee: Lanzhou Lectures on Henstock Integration.World Scientific, Singapore, 1989. Zbl 0699.26004, MR 1050957
Reference: [17] V.  Marraffa: A descriptive characterization of the variational Henstock integral.Matimyás Mat. 22 (1999), 73–84. Zbl 1030.28005, MR 1770168
Reference: [18] K.  Musial: Pettis integration.Suppl. Rend. Circ. Mat. Palermo, Ser. II, 10 (1985), 133–142. Zbl 0649.46040, MR 0894278
Reference: [19] V. A.  Skvortsov and A. P.  Solodov: A variational integral for Banach-valued functions.Real Anal. Exchange 24 (1998–99), 799–806. MR 1704751
Reference: [20] B. S.  Thomson: Derivatives of Interval Functions.Memoires of the American Mathematical Society No. 452, 1991. MR 1078198
.

Files

Files Size Format View
CzechMathJ_52-2002-3_15.pdf 451.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo