Previous |  Up |  Next

Article

Title: The single-valued extension property for sums and products of commuting operators (English)
Author: Miller, T. L.
Author: Neumann, M. M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 3
Year: 2002
Pages: 635-642
Summary lang: English
.
Category: math
.
Summary: It is shown that the sum and the product of two commuting Banach space operators with Dunford’s property $\mathrm (C)$ have the single-valued extension property. (English)
Keyword: single-valued extension property
Keyword: Dunford’s property $\mathrm (C)$
Keyword: decomposable operators
MSC: 47A11
MSC: 47B40
idZBL: Zbl 1075.47500
idMR: MR1923267
.
Date available: 2009-09-24T10:54:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127749
.
Reference: [1] E. Albrecht and J.  Eschmeier: Analytic functional models and local spectral theory.Proc. London Math. Soc. 75 (1997), 323–348. MR 1455859
Reference: [2] E. Albrecht, J. Eschmeier and M. M. Neumann: Some topics in the theory of decomposable operators.In: Advances in Invariant Subspaces and Other Results of Operator Theory. Operator Theory: Advances and Applications, Vol. 17, Birkhäuser Verlag, Basel, 1986, pp. 15–34. MR 0901056
Reference: [3] C. Apostol: Decomposable multiplication operators.Rev. Roumaine Math. Pures Appl. 17 (1972), 323–333. Zbl 0239.47013, MR 0310665
Reference: [4] B. Aupetit and D.  Drissi: Local spectrum and subharmonicity.In: Proc. Edinburgh Math. Soc. Vol. 39, 1996, pp. 571–579. MR 1417698
Reference: [5] I. Colojoară and C.  Foiaş: Theory of Generalized Spectral Operators.Gordon and Breach, New York, 1968. MR 0394282
Reference: [6] J. Eschmeier: Spectral decompositions and decomposable multipliers.Manuscripta Math. 51 (1985), 201–224. Zbl 0578.47024, MR 0788679, 10.1007/BF01168353
Reference: [7] J.  Eschmeier, K. B. Laursen and M. M. Neumann: Multipliers with natural local spectra on commutative Banach algebras.J. Funct. Analysis 138 (1996), 273–294. MR 1395959
Reference: [8] R. Kantrowitz and M. M. Neumann: On certain Banach algebras of vector-valued functions.In: Function spaces, the second conference. Lecture Notes in Pure and Applied Math. Vol. 172, Marcel Dekker, New York, 1995, pp. 223–242. MR 1352233
Reference: [9] R. Lange and S. Wang: New Approaches in Spectral Decomposition. Contemp. Math. 128.Amer. Math. Soc., Providence, RI, 1992. MR 1162741
Reference: [10] K. B. Laursen and M. M. Neumann: Asymptotic intertwining and spectral inclusions on Banach spaces.Czechoslovak Math. J. 43(118) (1993), 483–497. MR 1249616
Reference: [11] T. L. Miller and V. G. Miller: An operator satisfying Dunford’s condition  $\mathrm (C)$ but without Bishop’s property  $(\text{b})$.Glasgow Math.  J. 40 (1998), 427–430. MR 1660054, 10.1017/S0017089500032754
Reference: [12] M. M. Neumann: On local spectral properties of operators on Banach spaces.Rend. Circ. Mat. Palermo (2), Suppl. 56 (1998), 15–25. Zbl 0929.47001, MR 1710819
Reference: [13] S. L. Sun: The sum and product of decomposable operators.Northeast. Math.  J. 5 (1989), 105–117. (Chinese) Zbl 0699.47022, MR 1010749
Reference: [14] F.-H. Vasilescu: Analytic Functional Calculus and Spectral Decompositions.Editura Academiei and D.  Reidel Publ. Company, Bucharest and Dordrecht, 1982. Zbl 0495.47013, MR 0690957
Reference: [15] P. Vrbová: On local spectral properties of operators in Banach spaces.Czechoslovak Math. J. 23(98) (1973), 483–492. MR 0322536
.

Files

Files Size Format View
CzechMathJ_52-2002-3_16.pdf 310.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo