Previous |  Up |  Next

Article

Title: Łukasiewicz tribes are absolutely sequentially closed bold algebras (English)
Author: Frič, Roman
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 861-874
Summary lang: English
.
Category: math
.
Summary: We show that each sequentially continuous (with respect to the pointwise convergence) normed measure on a bold algebra of fuzzy sets (Archimedean $MV$-algebra) can be uniquely extended to a sequentially continuous measure on the generated Łukasiewicz tribe and, in a natural way, the extension is maximal. We prove that for normed measures on Łukasiewicz tribes monotone (sequential) continuity implies sequential continuity, hence the assumption of sequential continuity is not restrictive. This yields a characterization of the Łukasiewicz tribes as bold algebras absolutely sequentially closed with respect to the extension of probabilities. The result generalizes the relationship between fields of sets and the generated $\sigma $-fields discovered by J. Novák. We introduce the category of bold algebras and sequentially continuous homomorphisms and prove that Łukasiewicz tribes form an epireflective subcategory. The restriction to fields of sets yields the epireflective subcategory of $\sigma $-fields of sets. (English)
Keyword: $MV$-algebra
Keyword: bold algebra
Keyword: field of sets
Keyword: Łukasiewicz tribe
Keyword: sequential convergence
Keyword: sequential continuity
Keyword: measure
Keyword: extension of measures
Keyword: sequential envelope
Keyword: absolute sequentially closed bold algebra
Keyword: epireflective subcategory
MSC: 06B35
MSC: 18B99
MSC: 28E10
MSC: 28E15
MSC: 54C20
MSC: 60A10
idZBL: Zbl 1016.28013
idMR: MR1940065
.
Date available: 2009-09-24T10:57:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127770
.
Reference: [1] L. P. Belluce: Semisimple algebras of infinite valued logics.Canad. J.  Math. 38 (1986), 1356–1379. MR 0873417, 10.4153/CJM-1986-069-0
Reference: [2] R. Cignoli, I. M. L.  D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Academic Publ., Dordrecht, 2000. MR 1786097
Reference: [3] A. Dvurečenskij: Loomis-Sikorski theorem for $\sigma $-complete $MV$-algebras and $l$-groups.Austral. Math. Soc. J. Ser. A 68 (2000), 261–277. MR 1738040, 10.1017/S1446788700001993
Reference: [4] R. Frič: A Stone-type duality and its applications to probability.In: Proceedings of the 12th Summer Conference on General Topology and its Applications, North Bay, August 1997, 1999, pp. 125–137. MR 1718934
Reference: [5] R. Frič: Boolean algebras: convergence and measure.Topology Appl. 111 (2001), 139–149. MR 1806034, 10.1016/S0166-8641(99)00195-9
Reference: [6] H. Herrlich and G. E.  Strecker: Category theory. Second edition.Heldermann Verlag, Berlin, 1976. MR 2377903
Reference: [7] J. Jakubík: Sequential convergences on $MV$-algebras.Czechoslovak Math.  J. 45(120) (1995), 709–726. MR 1354928
Reference: [8] M. Jurečková: The measure extension theorem on $MV$-algebras.Tatra Mt. Math. Publ. 6 (1995), 55–61. MR 1363983
Reference: [9] E. P. Klement: Characterization of finite fuzzy measures using Markoff-kernels.J.  Math. Anal. Appl. 75 (1980), 330–339. Zbl 0471.60008, MR 0581822, 10.1016/0022-247X(80)90083-9
Reference: [10] E. P. Klement and M.  Navara: A characterization of tribes with respect to the Łukasiewicz $t$-norm.Czechoslovak Math.  J. 47(122) (1997), 689–700. MR 1479313, 10.1023/A:1022822719086
Reference: [11] F. Kôpka and F.  Chovanec: $D$-posets.Math. Slovaca 44 (1994), 21–34. MR 1290269
Reference: [12] P. Kratochvíl: Multisequences and measure.In: General Topology and its Relations to Modern Analysis and Algebra, IV (Proc. Fourth Prague Topological Sympos., 1976), Part B Contributed Papers, Society of Czechoslovak Mathematicians and Physicists, Praha, 1977, pp. 237–244. MR 0460576
Reference: [13] R. Mesiar: Fuzzy sets and probability theory.Tatra Mt. Math. Publ. 1 (1992), 105–123. Zbl 0790.60005, MR 1230469
Reference: [14] J. Novák: Über die eindeutigen stetigen Erweiterungen stetiger Funktionen.Czechoslovak Math.  J. 8(83) (1958), 344–355. MR 0100826
Reference: [15] J. Novák: On the sequential envelope.In: General Topology and its Relation to Modern Analysis and Algebra (I) (Proc. (First) Prague Topological Sympos., 1961), Publishing House of the Czechoslovak Academy of Sciences, Praha, 1962, pp. 292–294. MR 0175082
Reference: [16] J. Novák: On convergence spaces and their seqeuntial envelopes.Czechoslovak Math.  J. 15(90) (1965), 74–100. MR 0175083
Reference: [17] J. Novák: On sequential envelopes defined by means of certain classes of functions.Czechoslovak Math.  J. 18(93) (1968), 450–456. MR 0232335
Reference: [18] E. Pap: Null-Additive Set Functions.Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 1995. Zbl 0968.28010, MR 1368630
Reference: [19] K. Piasecki: Probability fuzzy events defined as denumerable additive measure.Fuzzy Sets and Systems 17 (1985), 271–284. MR 0819364, 10.1016/0165-0114(85)90093-4
Reference: [20] P. Pták and S.  Pulmannová: Orthomodular Structures as Quantum Logics.Kluwer Acad. Publ., Dordrecht, 1991. MR 1176314
Reference: [21] B. Riečan and T. Neubrunn: Integral, Measure, and Ordering.Kluwer Acad. Publ., Dordrecht-Boston-London, 1997. MR 1489521
.

Files

Files Size Format View
CzechMathJ_52-2002-4_17.pdf 368.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo