Previous |  Up |  Next

Article

Title: On oscillation of solutions of forced nonlinear neutral differential equations of higher order (English)
Author: Parhi, N.
Author: Rath, R. N.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 805-825
Summary lang: English
.
Category: math
.
Summary: In this paper, necessary and sufficient conditions are obtained for every bounded solution of \[ [y (t) - p (t) y (t - \tau )]^{(n)} + Q (t) G \bigl (y (t - \sigma )\bigr ) = f (t), \quad t \ge 0, \qquad \mathrm{(*)}\] to oscillate or tend to zero as $t \rightarrow \infty $ for different ranges of $p (t)$. It is shown, under some stronger conditions, that every solution of $(*)$ oscillates or tends to zero as $t \rightarrow \infty $. Our results hold for linear, a class of superlinear and other nonlinear equations and answer a conjecture by Ladas and Sficas, Austral. Math. Soc. Ser. B 27 (1986), 502–511, and generalize some known results. (English)
Keyword: oscillation
Keyword: nonoscillation
Keyword: neutral equations
Keyword: asymptotic behaviour
MSC: 34C10
MSC: 34C15
MSC: 34K11
MSC: 34K25
MSC: 34K40
idZBL: Zbl 1080.34522
idMR: MR2018832
.
Date available: 2009-09-24T11:06:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127842
.
Reference: [1] Ming-Po-Chen, Z. C.  Wang, J. S.  Yu and B. G.  Zhang: Oscillation and asymptotic behaviour of higher order neutral differential equations.Bull. Inst. Math. Acad. Sinica 22 (1994), 203–217. MR 1297358
Reference: [2] Q.  Chuanxi and G.  Ladas: Oscillation of higher order neutral differential equations with variable coefficients.Math. Nachr. 150 (1991), 15–24. MR 1109642, 10.1002/mana.19911500103
Reference: [3] D. A.  Georgiou and C.  Qian: Oscillation criteria in neutral equations of $n$th order with variable coefficients.Internat. J.  Math. Math. Sci. 14 (1991), 689–696. MR 1125418, 10.1155/S0161171291000923
Reference: [4] K.  Gopalsamy, B. S.  Lalli and B. G.  Zhang: Oscillation in odd order neutral differential equations.Czechoslovak Math.  J. 42 (1992), 313–323. MR 1179502
Reference: [5] K.  Gopalsamy, S. R.  Grace and B. S.  Lalli: Oscillation of even order neutral differential equations.Indian J.  Math. 35 (1993), 9–25. MR 1249639
Reference: [6] S. R.  Grace: On the oscillation of certain forced functional differential equation.J.  Math. Anal. Appl. 202 (1996), 555–577. MR 1406248, 10.1006/jmaa.1996.0334
Reference: [7] I.  Gyori and G.  Ladas: Oscialltion Theory of Delay-Differential Equations with Applications.Clarendon Press, Oxford, 1991. MR 1168471
Reference: [8] T. H.  Hildebrandt: Introduction to the Theory of Integration.Academic Press, New York, 1963. Zbl 0112.28302, MR 0154957
Reference: [9] I. T.  Kiguradze: On the oscillation of solutions of the equation $\frac{{\mathrm d}^m u}{{\mathrm d}t^m } + a(t)u^m u = 0$.Mat. Sb. 65 (1964), 172–187. MR 0173060
Reference: [10] G.  Ladas and Y. G.  Sficas: Oscillations of higher order neutral equations.Austral. Math. Soc. Ser.  B 27 (1986), 502–511. MR 0836222, 10.1017/S0334270000005105
Reference: [11] G.  Ladas, C.  Qian and J.  Yan: Oscillations of higher order neutral differential equations.Portugal. Math. 48 (1991), 291–307. MR 1127127
Reference: [12] G. S.  Ladde, V.  Lakshmikantham and B. G.  Zhang: Oscillation Theory of Differential Equations with Deviating Arguments.Marcel Dekker INC., New York, 1987. MR 1017244
Reference: [13] X. Z.  Liu, J. S.  Yu and B. G.  Zhang: Oscillation and nonoscillation for a class of neutral differential equations.Differential Equations Dynam. Systems 1 (1993), 197–204. MR 1258897
Reference: [14] N.  Parhi and P. K.  Mohanty: Oscillation of solutions of forced neutral differential equations of $n$-th order.Czechoslovak Math.  J. 45 (1995), 413–433. MR 1344507
Reference: [15] N.  Parhi and P. K.  Mohanty: Maintenance of oscillation of neutral differential equations under the effect of a forcing term.Indian J.  Pure Appl. Math. 26 (1995), 909–919. MR 1347539
Reference: [16] N.  Parhi and P. K.  Mohanty: Oscillatory behaviour of solutions of forced neutral differential equations.Ann. Polon. Math. 65 (1996), 1–10. MR 1414747, 10.4064/ap-65-1-1-10
Reference: [17] N.  Parhi and P. K.  Mohanty: Oscillations of neutral differential equations of higher order.Bull. Inst. Math. Acad. Sinica 24 (1996), 139–150. MR 1398241
Reference: [18] N.  Parhi: Oscillation of higher order differential equations of neutral type.Czechoslovak Math.  J. 50 (2000), 155–173. 10.1023/A:1022405707349
Reference: [19] N.  Parhi and R. N.  Rath: On oscillation criteria for a forced neutral differential equation.Bull. Inst. Math. Acad. Sinica 28 (2000), 59–70. MR 1750329
Reference: [20] N.  Parhi and R. N.  Rath: Oscillation criteria for forced first order neutral differential equations with variable coefficients.J.  Math. Anal. Appl. 256 (2001), 525–541. MR 1821755, 10.1006/jmaa.2000.7315
Reference: [21] N. Parhi and R. N.  Rath: On oscillation and asymptotic behaviour of solutions of forced first order neutral differential equations.Proc. Indian. Acad. Sci. (Math. Sci.), Vol.  111, 2001, pp. 337–350. MR 1851095
Reference: [22] H. L.  Royden: Real Analysis.3rd edition, MacMillan Publ. Co., New York, 1989. MR 1013117
Reference: [23] J. H.  Shen: New oscillation criteria for odd order neutral equations.J.  Math. Anal. Appl. 201 (1996), 387–395. Zbl 0860.34040, MR 1396907, 10.1006/jmaa.1996.0262
Reference: [24] D.  Tang: Oscillation of higher order nonlinear neutral functional differential equation.Ann. Differential Equations 12 (1996), 83–88. Zbl 0849.34059, MR 1394017
Reference: [25] J. S.  Yu, Z. C.  Wang and B. G.  Zhang: Oscillation of higher order neutral differential equations.Rocky Mountain J.  Math (to appear). MR 1340027
Reference: [26] B. G.  Zhang and K.  Gopalsam: Oscillations and nonoscillations in higher order neutral equations.J.  Math. Phys. Sci. 25 (1991), 152–165.
.

Files

Files Size Format View
CzechMathJ_53-2003-4_4.pdf 395.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo