Title:
|
On total incomparability of mixed Tsirelson spaces (English) |
Author:
|
Bernués, Julio |
Author:
|
Pascual, Javier |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
53 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
841-859 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give criteria of total incomparability for certain classes of mixed Tsirelson spaces. We show that spaces of the form $T[(\mathcal M_k,\theta _k)_{k =1}^{l}]$ with index $i(\mathcal M_k)$ finite are either $c_0$ or $\ell _p$ saturated for some $p$ and we characterize when any two spaces of such a form are totally incomparable in terms of the index $i(\mathcal M_k)$ and the parameter $\theta _k$. Also, we give sufficient conditions of total incomparability for a particular class of spaces of the form $T[(\mathcal A_k,\theta _k)_{k = 1}^\infty ]$ in terms of the asymptotic behaviour of the sequence $\Bigl \Vert \sum _{i=1}^n e_i\Bigr \Vert $ where $(e_i)$ is the canonical basis. (English) |
Keyword:
|
mixed Tsirelson spaces |
Keyword:
|
totally incomparable spaces |
MSC:
|
46B03 |
MSC:
|
46B20 |
idZBL:
|
Zbl 1080.46507 |
idMR:
|
MR2018834 |
. |
Date available:
|
2009-09-24T11:07:07Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127844 |
. |
Reference:
|
[1] S. A. Argyros and I. Deliyanni: Banach spaces of the type of Tsirelson.Preprint (1992). |
Reference:
|
[2] S. A. Argyros and I. Deliyanni: Examples of asymptotic $l^1$ Banach spaces.Trans. Amer. Math. Soc. 349 (1997), 973–995. MR 1390965, 10.1090/S0002-9947-97-01774-1 |
Reference:
|
[3] Bellenot: Tsirelson superspaces and $l_p$.J. Funct. Anal. 69 (1986), 207–228. MR 0865221, 10.1016/0022-1236(86)90089-3 |
Reference:
|
[4] J. Bernués and I. Deliyanni: Families of finite subsets of $\mathbb{N}$ of low complexity and Tsirelson type spaces.Math. Nach. 222 (2001), 15–29. MR 1812486, 10.1002/1522-2616(200102)222:1<15::AID-MANA15>3.0.CO;2-2 |
Reference:
|
[5] J. Bernués and Th. Schlumprecht: El problema de la distorsión y el problema de la base incondicional.Colloquium del departamento de análisis, Universidad Complutense, Sección 1, Vol. 33, 1995. |
Reference:
|
[6] P. G. Casazza and T. Shura: Tsirelson’s Space.LNM 1363, Springer-Verlag, Berlin, 1989. MR 0981801 |
Reference:
|
[7] T. Figiel and W. B. Johnson: A uniformly convex Banach space which contains no $l_p$.Compositio Math. 29 (1974), 179–190. MR 0355537 |
Reference:
|
[8] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces I, II.Springer-Verlag, New York, 1977. MR 0500056 |
Reference:
|
[9] A. Manoussakis: On the structure of a certain class of mixed Tsirelson spaces.Positivity 5 (2001), 193–238. Zbl 0988.46009, MR 1836747, 10.1023/A:1011456204116 |
Reference:
|
[10] E. Odell and T. Schlumprecht: A Banach space block finitely universal for monotone basis.Trans. Amer. Math. Soc. 352 (2000), 1859–1888. MR 1637094, 10.1090/S0002-9947-99-02425-3 |
Reference:
|
[11] Th. Schlumprecht: An arbitrarily distortable Banach space.Israel J. Math. 76 (1991), 81–95. Zbl 0796.46007, MR 1177333, 10.1007/BF02782845 |
Reference:
|
[12] B. S. Tsirelson: Not every Banach space contains an embedding of $l_p$ or $c_0$.Funct. Anal. Appl. 8 (1974), 138–141. 10.1007/BF01078599 |
Reference:
|
[13] L. Tzafriri: On the type and cotype of Banach spaces.Israel J. Math. 32 (1979), 32–38. Zbl 0402.46013, MR 0531598, 10.1007/BF02761182 |
. |