Article
Keywords:
jet of fibered manifold morphism; contact element; Weil bundle; natural operator
Summary:
For every product preserving bundle functor $T^\mu $ on fibered manifolds, we describe the underlying functor of any order $(r,s,q), s\ge r\le q$. We define the bundle $K_{k,l}^{r,s,q} Y$ of $(k,l)$-dimensional contact elements of the order $(r,s,q)$ on a fibered manifold $Y$ and we characterize its elements geometrically. Then we study the bundle of general contact elements of type $\mu $. We also determine all natural transformations of $K_{k,l}^{r,s,q} Y$ into itself and of $T(K_{k,l}^{r,s,q} Y)$ into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from $Y$ to $K_{k,l}^{r,s,q} Y$.
References:
                        
[1] R. Alonso: 
Jet manifold associated to a Weil bundle. Arch. Math. (Brno) 36 (2000), 195–199. 
MR 1785036 | 
Zbl 1049.58007[2] A. Cabras and I. Kolář: 
Prolongation of projectable tangent valued forms. To appear in Rendiconti Palermo. 
MR 1942654[3] M. Doupovec and I. Kolář: 
On the jets of fibered manifold morphisms. Cahiers Topo. Géom. Diff. Catégoriques XL (1999), 21–30. 
MR 1682575[4] C. Ehresmann: Oeuvres complètes et commentées. Parties I-A et I-2. Cahiers Topo. Géom. Diff. XXIV (1983).
[6] I. Kolář: 
Covariant approach to natural transformations of Weil functors. Comment. Math. Univ. Carolin. 27 (1986), 723–729. 
MR 0874666[7] I. Kolář, P. W. Michor and J. Slovák: 
Natural Operations in Differential Geometry. Springer-Verlag, 1993. 
MR 1202431[8] I. Kolář and W. M. Mikulski: 
Natural lifting of connections to vertical bundles. Supplemento ai Rendiconti del Circolo Mat. di Palermo, Serie II 63 (2000), 97–102. 
MR 1758084[10] W. M. Mikulski: 
Product preserving bundle functors on fibered manifolds. Arch. Math. (Brno) 32 (1996), 307–316. 
MR 1441401 | 
Zbl 0881.58002[12] J. Tomáš: 
Natural operators transforming projectable vector fields to products preserving bundles. Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 59 (1999), 181–187. 
MR 1692269[13] A. Weil: 
Théorie des points proches sur les variétés différentielles. Collogue de C.N.R.S, Strasbourg, 1953, pp. 111–117. 
MR 0061455