Previous |  Up |  Next

Article

Title: Contact elements on fibered manifolds (English)
Author: Kolář, Ivan
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 1017-1030
Summary lang: English
.
Category: math
.
Summary: For every product preserving bundle functor $T^\mu $ on fibered manifolds, we describe the underlying functor of any order $(r,s,q), s\ge r\le q$. We define the bundle $K_{k,l}^{r,s,q} Y$ of $(k,l)$-dimensional contact elements of the order $(r,s,q)$ on a fibered manifold $Y$ and we characterize its elements geometrically. Then we study the bundle of general contact elements of type $\mu $. We also determine all natural transformations of $K_{k,l}^{r,s,q} Y$ into itself and of $T(K_{k,l}^{r,s,q} Y)$ into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from $Y$ to $K_{k,l}^{r,s,q} Y$. (English)
Keyword: jet of fibered manifold morphism
Keyword: contact element
Keyword: Weil bundle
Keyword: natural operator
MSC: 53A55
MSC: 58A20
idZBL: Zbl 1080.58002
idMR: MR2018847
.
Date available: 2009-09-24T11:08:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127857
.
Reference: [1] R. Alonso: Jet manifold associated to a Weil bundle.Arch. Math. (Brno) 36 (2000), 195–199. Zbl 1049.58007, MR 1785036
Reference: [2] A. Cabras and I. Kolář: Prolongation of projectable tangent valued forms.To appear in Rendiconti Palermo. MR 1942654
Reference: [3] M. Doupovec and I. Kolář: On the jets of fibered manifold morphisms.Cahiers Topo. Géom. Diff. Catégoriques XL (1999), 21–30. MR 1682575
Reference: [4] C. Ehresmann: Oeuvres complètes et commentées. Parties I-A et I-2.Cahiers Topo. Géom. Diff. XXIV (1983).
Reference: [5] I. Kolář: Affine structure on Weil bundles.Nagoya Math. J. 158 (2000), 99–106. MR 1766571, 10.1017/S0027763000007339
Reference: [6] I. Kolář: Covariant approach to natural transformations of Weil functors.Comment. Math. Univ. Carolin. 27 (1986), 723–729. MR 0874666
Reference: [7] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry.Springer-Verlag, 1993. MR 1202431
Reference: [8] I. Kolář and W. M. Mikulski: Natural lifting of connections to vertical bundles.Supplemento ai Rendiconti del Circolo Mat. di Palermo, Serie II 63 (2000), 97–102. MR 1758084
Reference: [9] W. M. Mikulski: The Natural operators lifting 1-forms on manifolds to the bundles of $A$-velocities.Mh. Math. 119 (1995), 63–77. Zbl 0823.58004, MR 1315684, 10.1007/BF01292769
Reference: [10] W. M. Mikulski: Product preserving bundle functors on fibered manifolds.Arch. Math. (Brno) 32 (1996), 307–316. Zbl 0881.58002, MR 1441401
Reference: [11] J. Muñoz, F. J. Muriel and J. Rodríguez: Weil bundles and jet spaces.Czechoslovak Math. J. 50 (2000), 721–748. MR 1792967, 10.1023/A:1022408527395
Reference: [12] J. Tomáš: Natural operators transforming projectable vector fields to products preserving bundles.Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 59 (1999), 181–187. MR 1692269
Reference: [13] A. Weil: Théorie des points proches sur les variétés différentielles.Collogue de C.N.R.S, Strasbourg, 1953, pp. 111–117. MR 0061455
.

Files

Files Size Format View
CzechMathJ_53-2003-4_19.pdf 389.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo