Previous |  Up |  Next

Article

Title: The directed geodetic structure of a strong digraph (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 1-8
Summary lang: English
.
Category: math
.
Summary: By a ternary structure we mean an ordered pair $(U_0, T_0)$, where $U_0$ is a finite nonempty set and $T_0$ is a ternary relation on $U_0$. A ternary structure $(U_0, T_0)$ is called here a directed geodetic structure if there exists a strong digraph $D$ with the properties that $V(D) = U_0$ and \[ T_0(u, v, w)\quad \text{if} \text{and} \text{only} \text{if}\quad d_D(u, v) + d_D(v, w) = d_D(u, w) \] for all $u, v, w \in U_0$, where $d_D$ denotes the (directed) distance function in $D$. It is proved in this paper that there exists no sentence ${\mathbf s}$ of the language of the first-order logic such that a ternary structure is a directed geodetic structure if and only if it satisfies ${\mathbf s}$. (English)
Keyword: strong digraph
Keyword: directed distance
Keyword: ternary relation
Keyword: finite structure
MSC: 03C13
MSC: 05C12
MSC: 05C20
idZBL: Zbl 1045.05039
idMR: MR2040215
.
Date available: 2009-09-24T11:09:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127861
.
Reference: [1] G.  Chartrand and L.  Lesniak: Graphs & Digraphs.Chapman & Hall, London, 1996. MR 1408678
Reference: [2] H-D.  Ebbinghaus and J.  Flum: Finite Model Theory.Springer-Verlag, Berlin, 1995. MR 1409813
Reference: [3] H. M.  Mulder: The interval function of a graph.Math. Centre Tracts 132, Math Centre, Amsterdam, 1980. Zbl 0446.05039, MR 0605838
Reference: [4] L.  Nebeský: A characterization of the interval function of a connected graph.Czechoslovak Math.  J. 44(119) (1994), 173–178. MR 1257943
Reference: [5] L.  Nebeský: Characterizing the interval function of a connected graph.Math. Bohem. 123 (1998), 137–144. MR 1673965
Reference: [6] L.  Nebeský: The interval function of a connected graph and a characterization of geodetic graphs.Math. Bohem. 126 (2001), 247–254. MR 1826487
Reference: [7] L.  Nebeský: The induced paths in a connected graph and a ternary relation determined by them.Math. Bohem. 127 (2002), 397–408. MR 1931324
.

Files

Files Size Format View
CzechMathJ_54-2004-1_1.pdf 321.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo