Previous |  Up |  Next

Article

Title: Subalgebras and homomorphic images of algebras having the CEP and the WCIP (English)
Author: Walendziak, Andrzej
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 155-160
Summary lang: English
.
Category: math
.
Summary: In the present paper we consider algebras satisfying both the congruence extension property (briefly the CEP) and the weak congruence intersection property (WCIP for short). We prove that subalgebras of such algebras have these properties. We deduce that a lattice has the CEP and the WCIP if and only if it is a two-element chain. We also show that the class of all congruence modular algebras with the WCIP is closed under the formation of homomorphic images. (English)
Keyword: CEP
Keyword: WCIP
Keyword: weak congruence
Keyword: lattice
MSC: 08A30
MSC: 08B10
idZBL: Zbl 1049.08002
idMR: MR2040227
.
Date available: 2009-09-24T11:10:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127872
.
Reference: [1] E. W. Kiss, L. Marki, P. Pröhle and W. Tholen: Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphism, residual smallness and injectivity.Studia Sci. Math. Hung. 18 (1983), 79–141. MR 0759319
Reference: [2] B. Šešelja and G. Vojvodič: A note on some lattice characterizations of Hamiltonian groups.Univ. u Novom Sadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat. 19 (1989), 179–184. MR 1100270
Reference: [3] B. Šešelja and G. Vojvodič: CEP and homomorphic images of algebras.Univ. u Novom Sadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat. 19 (1989), 75–80. MR 1099995
Reference: [4] B. Šešelja and A. Tepavčevič: Weak congruences and homomorphisms.Univ. u Novom Sadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat. 20 (1990), 61–69. MR 1158426
Reference: [5] B. Šešelja and A. Tepavčevič: Special elements of the lattice and lattice identities.Univ. u Novom Sadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat. 20 (1990), 21–29. MR 1158422
Reference: [6] B. Šešelja and A. Tepavčevič: On CEP and semimodularity in the lattice of weak congruences.Univ. u Novom Sadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat. 22 (1992), 95–106. MR 1295228
Reference: [7] G. Vojvodič and B. Šešelja: On the lattice of weak congruence relations.Algebra Universalis 25 (1988), 121–130. MR 0950740, 10.1007/BF01229965
.

Files

Files Size Format View
CzechMathJ_54-2004-1_13.pdf 274.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo