Previous |  Up |  Next

Article

Title: Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space (English)
Author: Chang, Kun Soo
Author: Cho, Dong Hyun
Author: Yoo, Il
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 161-180
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce a simple formula for conditional Wiener integrals over $C_0(\mathbb{B})$, the space of abstract Wiener space valued continuous functions. Using this formula, we establish various formulas for a conditional Wiener integral and a conditional Feynman integral of functionals on $C_0(\mathbb{B})$ in certain classes which correspond to the classes of functionals on the classical Wiener space introduced by Cameron and Storvick. We also evaluate the conditional Wiener integral and conditional Feynman integral for functionals of the form \[ \exp \biggl \lbrace \int _0^T \theta (s, x(s))\mathrm{d}\eta (s) \biggr \rbrace \] which are of interest in Feynman integration theories and quantum mechanics. (English)
Keyword: Banach algebra $S_{\mathbb{B}}^{\prime \prime }$
Keyword: Banach space $S_{n, \mathbb{B}}^{\prime \prime }$
Keyword: conditional Wiener integral
Keyword: conditional Feynman integral
Keyword: simple formula for conditional Wiener integrals
MSC: 28C20
MSC: 46G12
MSC: 81S40
idZBL: Zbl 1047.28008
idMR: MR2040228
.
Date available: 2009-09-24T11:10:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127873
.
Reference: [1] S. Albeverio and R.  Høegh-Krohn: Mathematical Theory of Feynman Path Integral. Lecture Notes in Mathematics Vol.  523.Springer-Verlag, Berlin, 1976. MR 0495901
Reference: [2] R. B. Ash: Real Analysis and Probability.Academic Press, New York, 1972. MR 0435320
Reference: [3] R. H.  Cameron and D. A.  Storvick: Some Banach algebras of analytic Feynman integrable functionals.In: Analytic Functions, Kozubnik, 1979. Lecture Notes in Mathematics Vol.  798, Springer-Verlag, Berlin-New York, 1980, pp. 18–67. MR 0577446
Reference: [4] K. S.  Chang and J. S.  Chang: Evaluation of some conditional Wiener integrals.Bull. Korean Math. Soc. 21 (1984), 99–106. MR 0768465
Reference: [5] K. S.  Chang, G. W.  Johnson and D. L. Skoug: Functions in the Fresnel class.Proc. Amer. Math. Soc. 100 (1987), 309–318. MR 0884471, 10.1090/S0002-9939-1987-0884471-6
Reference: [6] D. M. Chung: Scale-invariant measurability in abstract Wiener spaces.Pacific J.  Math. 130 (1987), 27–40. Zbl 0634.28007, MR 0910652, 10.2140/pjm.1987.130.27
Reference: [7] D. M.  Chung and D. L.  Skoug: Conditional analytic Feynman integrals and a related Schrödinger integral equation.SIAM. J.  Math. Anal. 20 (1989), 950–965. MR 1000731, 10.1137/0520064
Reference: [8] D. L.  Cohn: Measure Theory.Birkhäuser-Verlag, Boston, 1980. Zbl 0436.28001, MR 0578344
Reference: [9] M. D. Donsker and J. L.  Lions: Volterra variational equations, boundary value problems and function space integrals.Acta Math. 109 (1962), 147–228. MR 0151717
Reference: [10] G. W. Johnson: An unsymmetric Fubini theorem.Amer. Math. Monthly 91 (1984), 131–133. Zbl 0535.28004, MR 0729555, 10.2307/2322111
Reference: [11] G. W.  Johnson and M. L. Lapidus: Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus.Mem. Amer. Math. Soc. 62 (1986). MR 0849943
Reference: [12] G.  Kallianpur and C. Bromley: Generalized Feynman integrals using analytic continuation in several complex variables.In: Stochastic Analysis and Applications, M. A.  Pinsky (ed.), Dekker, New York, 1984. MR 0776983
Reference: [13] J. Kuelbs and R.  LePage: The law of the iterated logarithm for Brownian motion in a Banach space.Trans. Amer. Math. Soc. 185 (1973), 253–264. MR 0370725, 10.1090/S0002-9947-1973-0370725-3
Reference: [14] H. H.  Kuo: Gaussian measures in Banach Spaces. Lecture Notes in Mathematics Vol.  463.Springer-Verlag, Berlin-New York, 1975. MR 0461643
Reference: [15] W. J.  Padgett and R. L.  Taylor: Laws of Large Numbers for Normed Linear Spaces and Certain Fréchet Spaces. Lecture Notes in Mathematics Vol. 360.Springer-Verlag, Berlin-New York, 1973. MR 0426114
Reference: [16] C.  Park and D. L.  Skoug: A simple formula for conditional Wiener integrals with applications.Pacific J.  Math. 135 (1988), 381–394. MR 0968620, 10.2140/pjm.1988.135.381
Reference: [17] K. S.  Ryu: The Wiener integral over paths in abstract Wiener space.J.  Korean Math. Soc. 29 (1992), 317–331. Zbl 0768.28005, MR 1180659
Reference: [18] J.  Yeh: Inversion of conditional expectations.Pacific J.  Math. 52 (1974), 631–640. Zbl 0323.60003, MR 0365644, 10.2140/pjm.1974.52.631
Reference: [19] J.  Yeh: Inversion of conditional Wiener integrals.Pacific J.  Math. 59 (1975), 623–638. Zbl 0365.60073, MR 0390162, 10.2140/pjm.1975.59.623
Reference: [20] I. Yoo: The analytic Feynman integral over paths in abstract Wiener space.Comm. Korean Math. Soc. 10 (1995), 93–107. Zbl 0944.28011, MR 1430176
.

Files

Files Size Format View
CzechMathJ_54-2004-1_14.pdf 428.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo