Previous |  Up |  Next

Article

Title: Normal Vietoris implies compactness: a short proof (English)
Author: Maio, G. Di
Author: Meccariello, E.
Author: Naimpally, S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 181-182
Summary lang: English
.
Category: math
.
Summary: One of the most celebrated results in the theory of hyperspaces says that if the Vietoris topology on the family of all nonempty closed subsets of a given space is normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use cardinality arguments and are long. In this paper we present a short proof using known results concerning Hausdorff uniformities. (English)
Keyword: hyperspaces
Keyword: Vietoris topology
Keyword: locally finite topology
Keyword: Hausdorff metric
Keyword: compactness
Keyword: normality
Keyword: countable compactness
MSC: 54B20
MSC: 54D30
MSC: 54E15
idZBL: Zbl 1049.54010
idMR: MR2040229
.
Date available: 2009-09-24T11:10:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127874
.
Reference: [1] G. Beer: Topologies on Closed and Closed Convex Sets.Kluwer Academic Publishers, , 1993. Zbl 0792.54008, MR 1269778
Reference: [2] A.  Di Concilio, S. A.  Naimpally and P. L.  Sharma: Proximal hypertopologies.Proceedings of the VI  Brasilian Topological Meeting, Campinas, Brazil (1988), Unpublished.
Reference: [3] R.  Engelking: General Topology.Helderman Verlag, Berlin, 1989, Revised and completed version. Zbl 0684.54001, MR 1039321
Reference: [4] V.  M. Ivanova: On the theory of the space of subsets.Dokl. Akad. Nauk. SSSR 101 (1955), 601–603. MR 0069479
Reference: [5] J.  Keesling: Normality and properties related to compactness in hyperspaces.Proc. Amer. Math. Soc. 24 (1970), 760–766. Zbl 0189.53203, MR 0253292, 10.1090/S0002-9939-1970-0253292-7
Reference: [6] J.  Keesling: On the equivalence of normality and compactness in hyperspaces.Pacific J.  Math. 33 (1970), 657–667. Zbl 0182.25401, MR 0267516, 10.2140/pjm.1970.33.657
Reference: [7] S. A.  Naimpally and P. L.  Sharma: Fine uniformity and the locally finite hyperspace topology on  $2^X$.Proc. Amer. Math. Soc. 103 (1988), 641–646. MR 0943098, 10.1090/S0002-9939-1988-0943098-9
Reference: [8] N. V.  Velichko: On spaces of closed subsets.Sibirskii Matem.  Z. 16 (1975), 627–629.
.

Files

Files Size Format View
CzechMathJ_54-2004-1_15.pdf 240.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo