Previous |  Up |  Next


hyperspaces; Vietoris topology; locally finite topology; Hausdorff metric; compactness; normality; countable compactness
One of the most celebrated results in the theory of hyperspaces says that if the Vietoris topology on the family of all nonempty closed subsets of a given space is normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use cardinality arguments and are long. In this paper we present a short proof using known results concerning Hausdorff uniformities.
[1] G. Beer: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, , 1993. MR 1269778 | Zbl 0792.54008
[2] A.  Di Concilio, S. A.  Naimpally and P. L.  Sharma: Proximal hypertopologies. Proceedings of the VI  Brasilian Topological Meeting, Campinas, Brazil (1988), Unpublished.
[3] R.  Engelking: General Topology. Helderman Verlag, Berlin, 1989, Revised and completed version. MR 1039321 | Zbl 0684.54001
[4] V.  M. Ivanova: On the theory of the space of subsets. Dokl. Akad. Nauk. SSSR 101 (1955), 601–603. MR 0069479
[5] J.  Keesling: Normality and properties related to compactness in hyperspaces. Proc. Amer. Math. Soc. 24 (1970), 760–766. DOI 10.1090/S0002-9939-1970-0253292-7 | MR 0253292 | Zbl 0189.53203
[6] J.  Keesling: On the equivalence of normality and compactness in hyperspaces. Pacific J.  Math. 33 (1970), 657–667. DOI 10.2140/pjm.1970.33.657 | MR 0267516 | Zbl 0182.25401
[7] S. A.  Naimpally and P. L.  Sharma: Fine uniformity and the locally finite hyperspace topology on  $2^X$. Proc. Amer. Math. Soc. 103 (1988), 641–646. DOI 10.1090/S0002-9939-1988-0943098-9 | MR 0943098
[8] N. V.  Velichko: On spaces of closed subsets. Sibirskii Matem.  Z. 16 (1975), 627–629.
Partner of
EuDML logo