Previous |  Up |  Next

Article

Title: Zero-term ranks of real matrices and their preservers (English)
Author: Beasley, LeRoy B.
Author: Jun, Young-Bae
Author: Song, Seok-Zun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 183-188
Summary lang: English
.
Category: math
.
Summary: Zero-term rank of a matrix is the minimum number of lines (rows or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve zero-term rank of the $m \times n$ real matrices. We also obtain combinatorial equivalent condition for the zero-term rank of a real matrix. (English)
Keyword: linear operator
Keyword: zero-term rank
Keyword: $P,Q,B$-operator
MSC: 15A03
MSC: 15A04
idZBL: Zbl 1051.15001
idMR: MR2040230
.
Date available: 2009-09-24T11:11:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127875
.
Reference: [1] L. B. Beasley and N. J.  Pullman: Term-rank, permanent and rook-polynomial preservers.Linear Algebra Appl. 90 (1987), 33–46. MR 0884107, 10.1016/0024-3795(87)90302-8
Reference: [2] L. B.  Beasley, S.  Z.  Song and S. G.  Lee: Zero-term rank preservers.Linear and Multilinear Algebra 48 (2001), 313–318. MR 1928400, 10.1080/03081080108818677
Reference: [3] C. R.  Johnson and J. S.  Maybee: Vanishing minor conditions for inverse zero patterns.Linear Algebra Appl. 178 (1993), 1–15. MR 1197498
.

Files

Files Size Format View
CzechMathJ_54-2004-1_16.pdf 304.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo