Previous |  Up |  Next

Article

Keywords:
Beurling distributions; Hankel transformation; convolution
Summary:
In this paper we study Beurling type distributions in the Hankel setting. We consider the space ${\mathcal E}(w)^{\prime }$ of Beurling type distributions on $(0, \infty )$ having upper bounded support. The Hankel transform and the Hankel convolution are studied on the space ${\mathcal E}(w)^{\prime }$. We also establish Paley Wiener type theorems for Hankel transformations of distributions in ${\mathcal E}(w)^{\prime }$.
References:
[1] G. Altenburg: Bessel transformationen in Raumen von Grundfunktionen uber dem Intervall $\Omega = (0, \infty )$ un derem Dualraumen. Math. Nachr. 108 (1982), 197–218. MR 0695127
[2] M. Belhadj and J. J. Betancor: Beurling distributions and Hankel transforms. Math. Nachr 233-234 (2002), 19–45. MR 1879861
[3] M. Belhadj and J. J. Betancor: Hankel transformation and Hankel convolution of tempered Beurling distributions. Rocky Mountain J.  Math 31 (2001), 1171–1203. DOI 10.1216/rmjm/1021249437 | MR 1895292
[4] J. J. Betancor and I. Marrero: The Hankel convolution and the Zemanian spaces  $B_\mu $ and $B_\mu ^{\prime }$. Math. Nachr. 160 (1993), 277–298. MR 1245003
[5] J. J. Betancor and I. Marrero: Structure and convergence in certain spaces of distributions and the generalized Hankel convolution. Math. Japon. 38 (1993), 1141–1155. MR 1250341
[6] J. J. Betancor and I. Marrero: New spaces of type  $H_\mu $ and the Hankel transformation. Integral Transforms and Special Functions 3 (1995), 175–200. DOI 10.1080/10652469508819075 | MR 1619757
[7] J. J. Betancor and L. Rodríguez-Mesa: Hankel convolution on distribution spaces with exponential growth. Studia Math. 121 (1996), 35–52. MR 1414893
[8] A. Beurling: Quasi-analyticity and General Distributions. Lectures  4 and 5. A.M.S. Summer Institute, Stanford, 1961.
[9] G. Björck: Linear partial differential operators and generalized distributions. Ark. Math. 6 (1966), 351–407. DOI 10.1007/BF02590963 | MR 0203201
[10] J. Bonet, C. Fernández and R. Meise: Characterization of the $w$-hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Mathematica 25 (2000), 261–284. MR 1762416
[11] R. W. Braun and R. Meise: Generalized Fourier expansions for zero-solutions of surjective convolution operators in ${\mathcal D}_{\lbrace w\rbrace }(R)^{\prime }$. Arch. Math. 55 (1990), 55–63. DOI 10.1007/BF01199116 | MR 1059516
[12] R. W. Braun, R. Meise and B. A. Taylor: Ultradifferentiable functions and Fourier analysis. Results in Maths. 17 (1990), 206–237. DOI 10.1007/BF03322459 | MR 1052587
[13] F. M. Cholewinski: A Hankel convolution complex inversion theory. Mem. Amer. Math. Soc. 58 (1965). MR 0180813 | Zbl 0137.30901
[14] S. J. L. van Eijndhoven and M. J. Kerkhof: The Hankel transformation and spaces of type  $W$. Reports on Appl. and Numer. Analysis, 10. Dept. of Maths. and Comp. Sci., Eindhoven University of Technology, 1988.
[15] D. T. Haimo: Integral equations associated with Hankel convolutions. Trans. Amer. Math. Soc. 116 (1965), 330–375. DOI 10.1090/S0002-9947-1965-0185379-4 | MR 0185379 | Zbl 0135.33502
[16] C. S. Herz: On the mean inversion of Fourier and Hankel transforms. Proc. Nat. Acad. Sci. USA, 40 (1954), 996–999. MR 0063477 | Zbl 0059.09901
[17] I. I. Hirschman,  Jr.: Variation diminishing Hankel transforms. J.  Analyse Math. 8 (1960/61), 307–336. MR 0157197
[18] L. Hörmander: Hypoelliptic convolution equations. Math. Scand. 9 (1961), 178–184. MR 0139838
[19] I. Marrero and J. J. Betancor: Hankel convolution of generalized functions. Rendiconti di Matematica 15 (1995), 351–380. MR 1362778
[20] J. M. Méndez: On the Bessel transforms of arbitrary order. Math. Nachr. 136 (1988), 233–239. DOI 10.1002/mana.19881360116 | MR 0952475
[21] J. M. Méndez and A. M. Sánchez: On the Schwartz’s Hankel transformation of distributions. Analysis 13 (1993), 1–18. DOI 10.1524/anly.1993.13.12.1
[22] L. Schwartz: Theorie des distributions. Hermann, Paris, 1978. MR 0209834 | Zbl 0399.46028
[23] J. de Sousa-Pinto: A generalized Hankel convolution. SIAM J.  Appl. Math. 16 (1985), 1335–1346. DOI 10.1137/0516097 | MR 0807914 | Zbl 0592.46038
[24] K. Stempak: La theorie de Littlewood-Paley pour la transformation de Fourier-Bessel. C.R.  Acad. Sci. Paris 303 (Serie  I) (1986), 15–19. MR 0849618 | Zbl 0591.42014
[25] G. N. Watson: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, 1959. MR 1349110
[26] A. H. Zemanian: A distributional Hankel transformation. SIAM J.  Appl. Math. 14 (1966), 561–576. DOI 10.1137/0114049 | MR 0201930 | Zbl 0154.13803
[27] A. H. Zemanian: The Hankel transformation of certain distribution of rapid growth. SIAM J.  Appl. Math. 14 (1966), 678–690. DOI 10.1137/0114056 | MR 0211211
[28] A. H. Zemanian: Generalized Integral Transformations. Interscience Publishers, New York, 1968. MR 0423007 | Zbl 0181.12701
Partner of
EuDML logo