Previous |  Up |  Next

Article

Title: On properties of a graph that depend on its distance function (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 445-456
Summary lang: English
.
Category: math
.
Summary: If $G$ is a connected graph with distance function $d$, then by a step in $G$ is meant an ordered triple $(u, x, v)$ of vertices of $G$ such that $d(u, x) = 1$ and $d(u, v) = d(x, v) + 1$. A characterization of the set of all steps in a connected graph was published by the present author in 1997. In Section 1 of this paper, a new and shorter proof of that characterization is presented. A stronger result for a certain type of connected graphs is proved in Section 2. (English)
Keyword: connected graphs
Keyword: distance
Keyword: steps
Keyword: geodetically smooth graphs
MSC: 05C12
MSC: 05C75
idZBL: Zbl 1080.05506
idMR: MR2059265
.
Date available: 2009-09-24T11:14:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127902
.
Reference: [1] H.-J.  Bandelt and H. M.  Mulder: Pseudo-modular graphs.Discrete Math. 62 (1986), 245–260. MR 0866940, 10.1016/0012-365X(86)90212-8
Reference: [2] G.  Chartrand and L.  Lesniak: Graphs & Digraphs. Third edition.Chapman & Hall, London, 1996. MR 1408678
Reference: [3] S.  Klavžar and H. M.  Mulder: Median graphs: characterizations, location theory and related structures.J.  Combin. Math. Combin. Comput. 30 (1999), 103–127. MR 1705337
Reference: [4] H. M.  Mulder: The interval function of a graph.Math. Centre Tracts 132, Math. Centre, Amsterdam, 1980. Zbl 0446.05039, MR 0605838
Reference: [5] H.  M.  Mulder and L.  Nebeský: Modular and median signpost systems and their underlying graphs.Discuss. Math. Graph Theory 23 (2003), 309–32444. MR 2070159, 10.7151/dmgt.1204
Reference: [6] L.  Nebeský: Geodesics and steps in a connected graph.Czechoslovak Math.  J. 47 (122) (1997), 149–161. MR 1435613, 10.1023/A:1022404624515
Reference: [7] L.  Nebeský: An axiomatic approach to metric properties of connected graphs.Czechoslovak Math.  J. 50 (125) (2000), 3–14. MR 1745453, 10.1023/A:1022472700080
Reference: [8] L.  Nebeský: A theorem for an axiomatic approach to metric properties of graphs.Czechoslovak Math.  J. 50 (125) (2000), 121–133. MR 1745467, 10.1023/A:1022401506441
Reference: [9] L.  Nebeský: A tree as a finite nonempty set with a binary operation.Math. Bohem. 125 (2000), 455–458. MR 1802293
.

Files

Files Size Format View
CzechMathJ_54-2004-2_17.pdf 318.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo