Title:
|
Determinants of matrices associated with incidence functions on posets (English) |
Author:
|
Hong, Shaofang |
Author:
|
Sun, Qi |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
2 |
Year:
|
2004 |
Pages:
|
431-443 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $S=\lbrace x_1,\dots ,x_n\rbrace $ be a finite subset of a partially ordered set $P$. Let $f$ be an incidence function of $P$. Let $[f(x_i\wedge x_j)]$ denote the $n\times n$ matrix having $f$ evaluated at the meet $x_i\wedge x_j$ of $x_i$ and $x_j$ as its $i,j$-entry and $[f(x_i\vee x_j)]$ denote the $n\times n$ matrix having $f$ evaluated at the join $x_i\vee x_j$ of $x_i$ and $x_j$ as its $i,j$-entry. The set $S$ is said to be meet-closed if $x_i\wedge x_j\in S$ for all $1\le i,j\le n$. In this paper we get explicit combinatorial formulas for the determinants of matrices $[f(x_i\wedge x_j)]$ and $[f(x_i\vee x_j)]$ on any meet-closed set $S$. We also obtain necessary and sufficient conditions for the matrices $f(x_i\wedge x_j)]$ and $[f(x_i\vee x_j)]$ on any meet-closed set $S$ to be nonsingular. Finally, we give some number-theoretic applications. (English) |
Keyword:
|
meet-closed set |
Keyword:
|
greatest-type lower |
Keyword:
|
incidence function |
Keyword:
|
determinant |
Keyword:
|
nonsingularity |
MSC:
|
06A07 |
MSC:
|
06A12 |
MSC:
|
11C20 |
MSC:
|
15A57 |
idZBL:
|
Zbl 1080.11023 |
idMR:
|
MR2059264 |
. |
Date available:
|
2009-09-24T11:14:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127901 |
. |
Reference:
|
[1] M. Aigner: Combinatorial Theory.Springer-Verlag, New York, 1979. Zbl 0415.05001, MR 0542445 |
Reference:
|
[2] S. Beslin, S. Ligh: Greatest common divisor matrices.Linear Algebra Appl. 118 (1989), 69–76. MR 0995366 |
Reference:
|
[3] S. Beslin, S. Ligh: Another generalization of Smith’s determinant.Bull. Austral. Math. Soc. 40 (1989), 413–415. MR 1037636, 10.1017/S0004972700017457 |
Reference:
|
[4] K. Bourque, S. Ligh: Matrices associated with arithmetical functions.Linear and Multilinear Algebra 34 (1993), 261–267. MR 1304611, 10.1080/03081089308818225 |
Reference:
|
[5] P. Haukkanen: On meet matrices on posets.Linear Algebra Appl. 249 (1996), 111–123. Zbl 0870.15016, MR 1417412, 10.1016/0024-3795(95)00349-5 |
Reference:
|
[6] S. Hong: LCM matrix on an $r$-fold gcd-closed set.J. Sichuan Univ., Nat. Sci. Ed. 33 (1996), 650–657. Zbl 0869.11021, MR 1440627 |
Reference:
|
[7] S. Hong: On the Bourque-Ligh conjecture of least common multiple matrices.J. Algebra 218 (1999), 216–228. Zbl 1015.11007, MR 1704684, 10.1006/jabr.1998.7844 |
Reference:
|
[8] S. Hong: On the factorization of LCM matrices on gcd-closed sets.Linear Algebra Appl. 345 (2002), 225–233. Zbl 0995.15006, MR 1883274 |
Reference:
|
[9] D. Rearick: Semi-multiplicative functions.Duke Math. J. 33 (1966), 49–53. Zbl 0154.29503, MR 0184897, 10.1215/S0012-7094-66-03308-4 |
Reference:
|
[10] H. J. S. Smith: On the value of a certain arithmetical determinant.Proc. London Math. Soc. 7 (1875–1876), 208–212. |
. |