Previous |  Up |  Next

Article

Title: On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals (English)
Author: Boccuto, A.
Author: Riečan, B.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 591-607
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the extended real line. We prove some basic properties, among them the fact that our integral contains under suitable hypothesis the generalized Riemann integral and that every simple function which vanishes outside of a set of finite Lebesgue measure is integrable according to our definition, and in this case our integral coincides with the usual one. (English)
Keyword: Riesz spaces
Keyword: Henstock-Kurzweil integral
MSC: 28B05
MSC: 28B10
MSC: 28B15
MSC: 46G10
idZBL: Zbl 1080.28007
idMR: MR2086719
.
Date available: 2009-09-24T11:15:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127914
.
Reference: [1] A. Boccuto: Differential and integral calculus in Riesz spaces.Tatra Mt. Math. Publ. 14 (1998), 293–323. MR 1651221
Reference: [2] M. Duchoň and B. Riečan: On the Kurzweil-Stieltjes integral in ordered spaces.Tatra Mt. Math. Publ. 8 (1996), 133–141. MR 1475272
Reference: [3] D. H. Fremlin: Topological Riesz Spaces and Measure Theory.Cambridge Univ. Press, 1994. MR 0454575
Reference: [4] D. H. Fremlin: A direct proof of the Matthes-Wright integral extension theorem.J.  London Math. Soc. 11 (1975), 276–284. Zbl 0313.06016, MR 0380345
Reference: [5] L. P. Lee and R. Výborný: The integral: An easy approach after Kurzweil and Henstock.Cambridge Univ. Press, 2000. MR 1756319
Reference: [6] B. Riečan: On the Kurzweil integral for functions with values in ordered spaces  I.Acta Math. Univ. Comenian. 56–57 (1990), 75–83. MR 1083014
Reference: [7] B. Riečan: On operator valued measures in lattice ordered groups.Atti Sem. Mat. Fis. Univ. Modena 41 (1993), 235–238. MR 1225686
Reference: [8] B. Riečan and T. Neubrunn: Integral, Measure and Ordering.Kluwer Academic Publishers/Ister Science, 1997. MR 1489521
Reference: [9] B. Riečan and M. Vrábelová: On the Kurzweil integral for functions with values in ordered spaces  II.Math. Slovaca 43 (1993), 471–475. MR 1248980
Reference: [10] B. Riečan and M. Vrábelová: On integration with respect to operator valued measures in Riesz spaces.Tatra Mt. Math. Publ. 2 (1993), 149–165. MR 1251049
Reference: [11] B. Riečan and M. Vrábelová: On the Kurzweil integral for functions with values in ordered spaces  III.Tatra Mt. Math. Publ. 8 (1996), 93–100. MR 1475267
Reference: [12] B. Riečan and M. Vrábelová: The Kurzweil construction of an integral in ordered spaces.Czechoslovak Math.  J. 48(123) (1998), 565–574. MR 1637875, 10.1023/A:1022483929348
Reference: [13] J. D. M. Wright: The measure extension problem for vector lattices.Ann. Inst. Fourier Grenoble 21 (1971), 65–85. Zbl 0215.48101, MR 0330411, 10.5802/aif.393
.

Files

Files Size Format View
CzechMathJ_54-2004-3_5.pdf 381.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo