Previous |  Up |  Next

Article

Title: An algebraic version of the Cantor-Bernstein-Schröder theorem (English)
Author: Freytes, Hector
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 609-621
Summary lang: English
.
Category: math
.
Summary: The Cantor-Bernstein-Schröder theorem of the set theory was generalized by Sikorski and Tarski to $\sigma $-complete boolean algebras, and recently by several authors to other algebraic structures. In this paper we expose an abstract version which is applicable to algebras with an underlying lattice structure and such that the central elements of this lattice determine a direct decomposition of the algebra. Necessary and sufficient conditions for the validity of the Cantor-Bernstein-Schröder theorem for these algebras are given. These results are applied to obtain versions of the Cantor-Bernstein-Schröder theorem for $\sigma $-complete orthomodular lattices, Stone algebras, $BL$-algebras, $MV$-algebras, pseudo $MV$-algebras, Łukasiewicz and Post algebras of order $n$. (English)
Keyword: lattices
Keyword: central elements
Keyword: factor congruences
Keyword: varieties
MSC: 06B99
MSC: 06D05
MSC: 08B99
idZBL: Zbl 1080.06008
idMR: MR2086720
.
Date available: 2009-09-24T11:15:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127915
.
Reference: [1] R. Balbes and Ph.  Dwinger: Distributive Lattices.University of Missouri Press, Columbia, 1974. MR 0373985
Reference: [2] G.  Birkhoff: Lattice Theory, Third Edition.AMS, Providence, 1967. MR 0227053
Reference: [3] V.  Boicescu, A,  Filipoiu, G.  Georgescu and S. Rudeanu: Łukasiewicz-Moisil Algebras.North-Holland, Amsterdam, 1991. MR 1112790
Reference: [4] R. Cignoli: Representation of Łukasiewicz and Post algebras by continuous functions.Colloq. Math. 24 (1972), 127–138. Zbl 0246.02043, MR 0307996, 10.4064/cm-24-2-127-138
Reference: [5] R. Cignoli: Lectures at Buenos Aires University.2000.
Reference: [6] R.  Cignoli, M. I. D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer, Dordrecht, 2000. MR 1786097
Reference: [7] R. Cignoli and A.  Torrens: An algebraic analysis of product logic.Multiple Valued Logic 5 (2000), 45–65. MR 1743553
Reference: [8] A. De Simone, D. Mundici and M.  Navara: A Cantor-Bernstein Theorem for complete $MV$-algebras.Czechoslovak Math.  J 53 (2003), 437–447. MR 1983464, 10.1023/A:1026299723322
Reference: [9] A. De Simone, M.  Navara and P.  Pták: On interval homogeneous orthomodular lattices.Comment. Math. Univ. Carolin. 42 (2001), 23–30. MR 1825370
Reference: [10] A. Dvurečenskij: Pseudo $MV$-algebras are intervals in $l$-groups.J.  Austral. Math. Soc. (Ser.  A) 72 (2002), 427–445. MR 1902211, 10.1017/S1446788700036806
Reference: [11] A.  Dvurečenskij: On pseudo $MV$-algebras.Soft Computing 5 (2001), 347–354. MR 1865858, 10.1007/s005000100136
Reference: [12] G.  Georgescu and A. Iorgulescu: Pseudo $MV$-algebras.6 (2001), 95–135. MR 1817439
Reference: [13] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Dordrecht, 1998. MR 1900263
Reference: [14] U.  Höhle: Commutative, residuated $l$-monoids.In: Non-Classical Logics and their Applications to Fuzzy Subset. A Handbook on the Mathematical Foundations of Fuzzy Set Theory, U.  Höhle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995. MR 1345641
Reference: [15] J.  Jakubík: A theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete pseudo $MV$-algebras.Czechoslovak Math.  J (to appear). MR 1889037
Reference: [16] J. A.  Kalman: Lattices with involution.Trans. Amer. Math. Soc. 87 (1958), 485–491. Zbl 0228.06003, MR 0095135, 10.1090/S0002-9947-1958-0095135-X
Reference: [17] S.  Koppelberg: Handbook of Boolean Algebras, Vol. 1 (J. Donald Monk, ed.).North Holland, Amsterdam, 1989. MR 0991565
Reference: [18] T.  Kowalski and H.  Ono: Residuated Lattices: An algebraic glimpse at logics without contraction.Preliminary report, 2000.
Reference: [19] F.  Maeda and S.  Maeda: Theory of Symmetric Lattices.Springer-Verlag, Berlin, 1970. MR 0282889
Reference: [20] R.  Sikorski: A generalization of theorem of Banach and Cantor-Bernstein.Colloq. Math. 1 (1948), 140–144. MR 0027264, 10.4064/cm-1-2-140-144
Reference: [21] A. Tarski: Cardinal Algebras.Oxford University Press, New York, 1949. Zbl 0041.34502, MR 0029954
.

Files

Files Size Format View
CzechMathJ_54-2004-3_6.pdf 370.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo