Previous |  Up |  Next

Article

Title: On some structural properties of Banach function spaces and boundedness of certain integral operators (English)
Author: Kopaliani, T. S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 791-805
Summary lang: English
.
Category: math
.
Summary: In this paper the notions of uniformly upper and uniformly lower $\ell $-estimates for Banach function spaces are introduced. Further, the pair $(X,Y)$ of Banach function spaces is characterized, where $X$ and $Y$ satisfy uniformly a lower $\ell $-estimate and uniformly an upper $\ell $-estimate, respectively. The integral operator from $X$ into $Y$ of the form \[ K f(x)=\varphi (x) \int _0^x k(x,y)f(y)\psi (y)\mathrm{d}y \] is studied, where $k$, $\varphi $, $\psi $ are prescribed functions under some local integrability conditions, the kernel $k$ is non-negative and is assumed to satisfy certain additional conditions, notably one of monotone type. (English)
Keyword: Banach function space
Keyword: uniformly upper
Keyword: uniformly lower $\ell $-estimate
Keyword: Hardy type operator
MSC: 42B20
MSC: 42B25
MSC: 45P05
MSC: 46E30
MSC: 47G10
idZBL: Zbl 1080.47040
idMR: MR2086735
.
Date available: 2009-09-24T11:17:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127930
.
Reference: [1] C.  Bennett and R.  Sharpley: Interpolation of Operators.Acad. Press, Boston, 1988. MR 0928802
Reference: [2] J.  Lindenstrauss and L.  Tzafriri: Classical Banach Spaces. II.  Function Spaces.Springer-Verlag, , 1979. MR 0540367
Reference: [3] A.  V.  Bukhvalov, V. B.  Korotkov, A. G.  Kusraev, S. S.  Kutateladze and B. M.  Makarov: Vector Lattices and Integral Operators.Nauka, Novosibirsk, 1992. (Russian) MR 1190005
Reference: [4] J.  Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Math.  1034.Springer-Verlag, Berlin-Heidelberg-New York, 1983. MR 0724434
Reference: [5] V. D.  Stepanov: Nonlinear Analysis. Function Spaces and Applications 5.Olympia Press, 1994, pp. 139–176. MR 1322312
Reference: [6] E. N.  Lomakina and V. D.  Stepanov: On Hardy type operators in Banach function spaces on half-line.Dokl. Akad. Nauk 359 (1998), 21–23. (Russian) MR 1668395
Reference: [7] P.  Oinarov: Two-side estimates of the norm of some classes of integral operators.Trudy Mat. Inst. Steklov. 204 (1993), 240–250. (Russian) MR 1320028
Reference: [8] A. V.  Bukhvalov: Generalization of Kolmogorov-Nagumo’s theorem on tensor product.Kachestv. pribl. metod. issledov. operator. uravnen. 4 (1979), 48–65. (Russian)
Reference: [9] E. I.  Berezhnoi: Sharp estimates for operators on cones in ideal spaces.Trudy Mat. Inst. Steklov. 204 (1993), 3–36. (Russian) MR 1320016
Reference: [10] E. I.  Berezhnoi: Two-weighted estimations for the Hardy–Littlwood maximal function in ideal Banach spaces.Proc. Amer. Math. Soc. 127 (1999), 79–87. MR 1622773, 10.1090/S0002-9939-99-04998-9
Reference: [11] Q.  Lai: Weighted modular inequalities for Hardy type operators.Proc. London Math. Soc. 79 (1999), 649–672. Zbl 1030.46030, MR 1710168
Reference: [12] I. I.  Sharafutdinov: On the basisity of the Haar system in $L^{p(t)}([0,1])$ spaces.Mat. Sbornik 130 (1986), 275–283. (Russian)
Reference: [13] I. I.  Sharafutdinov: The topology of the space $L^{p(t)}([0,1])$.Mat. Zametki 26 (1976), 613–632. (Russian)
Reference: [14] O. Kováčik and J. Rákosník: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czechoslovak Math. J. 41 (1991), 592–618. MR 1134951
Reference: [15] H. H.  Schefer: Banach Lattices and Positive Operators.Springer-Verlag, Berlin-Heidelberg-New York, 1974.
.

Files

Files Size Format View
CzechMathJ_54-2004-3_21.pdf 398.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo