Previous |  Up |  Next

Article

Keywords:
Lerch’s formula; Hurwitz zeta function; zeta regularized product
Summary:
We give higher-power generalizations of the classical Lerch formula for the gamma function.
References:
[1] S. Bochner: Zeta functions and Green’s functions for linear partial differential operators of elliptic type with constant coefficients. Ann. Math. 57 (1953), 32–56. DOI 10.2307/1969725 | MR 0054830 | Zbl 0050.08001
[2] Ch. Deninger: Local $L$-factors of motives and regularized determinants. Invent. math. 107 (1992), 135–150. DOI 10.1007/BF01231885 | MR 1135468 | Zbl 0762.14015
[3] N. Kurokawa: Gamma factors and Plancherel measures. Proc. Japan Acad. 68A (1992), 256–260. MR 1202627 | Zbl 0797.11053
[4] N. Kurokawa and M. Wakayama: Higher Selberg zeta functions. Commun. Math. Phys. 247 (2004), 447–466. DOI 10.1007/s00220-004-1065-z | MR 2063268
[5] N. Kurokawa and M. Wakayama: Generalized zeta regularizations, quantum class number formulas, and Appell’s $O$-functions. The Ramanujan J (to appear). MR 2193381
[6] M. Lerch: Další studie v oboru Malmsténovských řad. Rozpravy České Akad. věd 3 (1894), 1–61.
[7] Yu. I. Manin: Lectures on zeta functions and motives (according to Deninger and Kurokawa). Astérisque 228 (1995), 121–163. MR 1330931
Partner of
EuDML logo