Previous |  Up |  Next

Article

Title: Some solutions for a class of singular equations (English)
Author: Altin, Abdullah
Author: Erençin, Ayşegül
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 969-979
Summary lang: English
.
Category: math
.
Summary: In this paper we obtain all solutions which depend only on $r$ for a class of partial differential equations of higher order with singular coefficients. (English)
Keyword: higher order equation solution of type $r^{m}$ singular equation iterated form
Keyword: solution of type $r^{m}$
Keyword: singular equation
Keyword: iterated form
MSC: 35A08
MSC: 35C05
MSC: 35G05
MSC: 35G99
idZBL: Zbl 1080.35011
idMR: MR2100009
.
Date available: 2009-09-24T11:19:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127945
.
Reference: [1] A. Altın: Solutions of type $r^{m}$ for a class of singular equations.Internat. J. Math. Math. Sci. 5 (1982), 613–619. MR 0669114, 10.1155/S0161171282000593
Reference: [2] A. Altın: Radial type solutions for a class of third order equations and their iterates.Math. Slovaca 49 (1999), 183–187. MR 1696946
Reference: [3] A. Elderly: Singularities of generalized axially symmetric potentials.Comm. Pure Appl. Math. 9 (1956), 403–414. MR 0084050, 10.1002/cpa.3160090312
Reference: [4] A. Weinstein: Generalized axially symmetric potential theory.Bull. Amer. Math. Soc. 59 (1953), 20–38. Zbl 0053.25303, MR 0053289, 10.1090/S0002-9904-1953-09651-3
Reference: [5] A. Weinstein: On a class of partial differential equations of even order.Ann. Mat. Pura Appl. 39 (1955), 245-254. Zbl 0065.33102, MR 0075411, 10.1007/BF02410772
Reference: [6] A. Weinstein: On a singular differential operator.Ann. Mat. Pura Appl. 49 (1960), 359–365. Zbl 0094.06101, MR 0111921, 10.1007/BF02414059
Reference: [7] A. Weinstein: Singular partial differential equations and their applications.Proc. Sympos. Univ. of Maryland (1961), 29–49. MR 0153965
Reference: [8] L. E. Payne: Representation formulas for solution of a class of partial differential equations.J. Math. 38 (1959), 145–149.
.

Files

Files Size Format View
CzechMathJ_54-2004-4_13.pdf 321.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo