Title:
|
Some solutions for a class of singular equations (English) |
Author:
|
Altin, Abdullah |
Author:
|
Erençin, Ayşegül |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
969-979 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we obtain all solutions which depend only on $r$ for a class of partial differential equations of higher order with singular coefficients. (English) |
Keyword:
|
higher order equation solution of type $r^{m}$ singular equation iterated form |
Keyword:
|
solution of type $r^{m}$ |
Keyword:
|
singular equation |
Keyword:
|
iterated form |
MSC:
|
35A08 |
MSC:
|
35C05 |
MSC:
|
35G05 |
MSC:
|
35G99 |
idZBL:
|
Zbl 1080.35011 |
idMR:
|
MR2100009 |
. |
Date available:
|
2009-09-24T11:19:26Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127945 |
. |
Reference:
|
[1] A. Altın: Solutions of type $r^{m}$ for a class of singular equations.Internat. J. Math. Math. Sci. 5 (1982), 613–619. MR 0669114, 10.1155/S0161171282000593 |
Reference:
|
[2] A. Altın: Radial type solutions for a class of third order equations and their iterates.Math. Slovaca 49 (1999), 183–187. MR 1696946 |
Reference:
|
[3] A. Elderly: Singularities of generalized axially symmetric potentials.Comm. Pure Appl. Math. 9 (1956), 403–414. MR 0084050, 10.1002/cpa.3160090312 |
Reference:
|
[4] A. Weinstein: Generalized axially symmetric potential theory.Bull. Amer. Math. Soc. 59 (1953), 20–38. Zbl 0053.25303, MR 0053289, 10.1090/S0002-9904-1953-09651-3 |
Reference:
|
[5] A. Weinstein: On a class of partial differential equations of even order.Ann. Mat. Pura Appl. 39 (1955), 245-254. Zbl 0065.33102, MR 0075411, 10.1007/BF02410772 |
Reference:
|
[6] A. Weinstein: On a singular differential operator.Ann. Mat. Pura Appl. 49 (1960), 359–365. Zbl 0094.06101, MR 0111921, 10.1007/BF02414059 |
Reference:
|
[7] A. Weinstein: Singular partial differential equations and their applications.Proc. Sympos. Univ. of Maryland (1961), 29–49. MR 0153965 |
Reference:
|
[8] L. E. Payne: Representation formulas for solution of a class of partial differential equations.J. Math. 38 (1959), 145–149. |
. |