Title:
|
Productively Fréchet spaces (English) |
Author:
|
Jordan, Francis |
Author:
|
Mynard, Frédéric |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
981-990 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We solve the long standing problem of characterizing the class of strongly Fréchet spaces whose product with every strongly Fréchet space is also Fréchet. (English) |
Keyword:
|
Fréchet |
Keyword:
|
strongly Fréchet filters and spaces |
Keyword:
|
product spaces |
MSC:
|
54A20 |
MSC:
|
54B10 |
MSC:
|
54D55 |
MSC:
|
54D99 |
MSC:
|
54G20 |
idZBL:
|
Zbl 1080.54506 |
idMR:
|
MR2100010 |
. |
Date available:
|
2009-09-24T11:19:33Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127946 |
. |
Reference:
|
[1] A. Arhangel’skiĭ: The frequency spectrum of a topological space and the product operation.Trans. Moscow Math. Soc. 40 (1981), 163–200. |
Reference:
|
[2] C. Costantini and P. Simon: An $\alpha _4$, not Fréchet product of $\alpha _4$ Fréchet spaces.Topology Appl. 108 (2000), 43–52. MR 1783423, 10.1016/S0166-8641(00)90096-8 |
Reference:
|
[3] S. Dolecki: Convergence-theoretic methods in quotient quest.Topology Appl. 73 (1996), 1–21. MR 1413721, 10.1016/0166-8641(96)00067-3 |
Reference:
|
[4] S. Dolecki: Active boundaries of upper semi-continuous and compactoid relations closed and inductively perfect maps.Rostock Math. Coll. 54 (2000), 51–68. MR 1820118 |
Reference:
|
[5] S. Dolecki and F. Mynard: Convergence-theoretic mechanism behind product theorems.Topology Appl. 104 (2000), 67–99. MR 1780899, 10.1016/S0166-8641(99)00012-7 |
Reference:
|
[6] S. Dolecki and T. Nogura: Two-fold theorem on Fréchetness of products.Czechoslovak Math. J. 49 (1999), 421–429. MR 1692508, 10.1023/A:1022420806729 |
Reference:
|
[7] E. van Douwen: The product of a Fréchet space and a metrizable space.Topology Appl. 47 (1992), 163–164. Zbl 0759.54013, MR 1192305, 10.1016/0166-8641(92)90026-V |
Reference:
|
[8] J. Gerlits and Z. Nagy: On Fréchet spaces.Rend. Circ. Mat. Palermo (2) 18 (1988), 51–71. MR 0958724 |
Reference:
|
[9] G. Gruenhage: A note on the product of Fréchet spaces.Topology Proc. 3 (1979), 109–115. Zbl 0427.54017, MR 0540482 |
Reference:
|
[10] C. Kendrick: On product of Fréchet spaces.Math. Nachr. 65 (1975), 117–123. 10.1002/mana.19750650109 |
Reference:
|
[11] I. Labuda: Compactoidness in topological spaces.(to appear). |
Reference:
|
[12] V. I. Malyhin: On countable spaces having no bicompactification of countable tightness.Dokl. Akad. Nauk SSR 206 (6) (1972), 1407–1411. Zbl 0263.54015, MR 0320981 |
Reference:
|
[13] E. Michael: A quintuple quotient quest.Gen. Topology Appl. 2 (1972), 91–138. Zbl 0238.54009, MR 0309045, 10.1016/0016-660X(72)90040-2 |
Reference:
|
[14] F. Mynard: Coreflectively modified continuous duality applied to classical product theorems.Applied Gen. Top. 2 (2001), 119–154. Zbl 1007.54008, MR 1890032 |
Reference:
|
[15] P. Nyikos: Subsets of $\omega ^{\omega }$ and the Fréchet-Urysohn and $\alpha _i$-properties.Topology Appl. 48 (1992), 91–116. MR 1195504, 10.1016/0166-8641(92)90021-Q |
Reference:
|
[16] T. Nogura: Product of Fréchet spaces. General Topology and its relations to modern analysis and algebra VI.Proc. Prague Topological Sympos. 86 (1988), 371–378. MR 0952623 |
Reference:
|
[17] T. Nogura: A counterexample for a problem of Arhangel’skiĭ concerning the Product of Fréchet spaces.Topology Appl. 25 (1987), 75–80. MR 0874979, 10.1016/0166-8641(87)90076-9 |
Reference:
|
[18] J. Novák: Double convergence and products of Fréchet spaces.Czechoslovak Math. J. 48 (1998), 207–227. MR 1624303, 10.1023/A:1022829218525 |
Reference:
|
[19] J. Novák: A note on product of Fréchet spaces.Czechoslovak Math. J. 47 (1997), 337–340. 10.1023/A:1022877814524 |
Reference:
|
[20] J. Novák: Concerning the topological product of two Fréchet spaces.General Topology and its relations to modern analysis and algebra IV, Proc. Fourth Prague Topological Sympos., 1977, pp. 342–343. MR 0474222 |
Reference:
|
[21] R. C. Olson: Biquotient maps, countably bisequential spaces and related topics.Topology Appl. 4 (1974), 1–28. MR 0365463, 10.1016/0016-660X(74)90002-6 |
Reference:
|
[22] P. Simon: A compact Fréchet space whose square is not Fréchet.Comment. Math. Univ. Carolin. 21 (1980), 749–753. Zbl 0466.54022, MR 0597764 |
Reference:
|
[23] K. Tamano: Product of compact Fréchet spaces.Proc. Japan Acad. Ser. A. Math. Sci. 62 (1986), 304–307. MR 0868827, 10.3792/pjaa.62.304 |
Reference:
|
[24] S. Todorcevic: Some applications of S and L combinatorics.Annals New York Acad. Sci., 1991, pp. 130–167. MR 1277886 |
. |