Title:
|
Cauchy problems in weighted Lebesgue spaces (English) |
Author:
|
Cholewa, Jan W. |
Author:
|
Dlotko, Tomasz |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
991-1013 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Global solvability and asymptotics of semilinear parabolic Cauchy problems in $\mathbb R^n$ are considered. Following the approach of A. Mielke [15] these problems are investigated in weighted Sobolev spaces. The paper provides also a theory of second order elliptic operators in such spaces considered over $\mathbb R^n$, $n\in \mathbb N$. In particular, the generation of analytic semigroups and the embeddings for the domains of fractional powers of elliptic operators are discussed. (English) |
Keyword:
|
Cauchy problem |
Keyword:
|
parabolic equation |
Keyword:
|
global existence |
Keyword:
|
asymptotic behavior of solutions |
MSC:
|
35B40 |
MSC:
|
35B41 |
MSC:
|
35K15 |
MSC:
|
35K55 |
MSC:
|
37L30 |
MSC:
|
47H20 |
MSC:
|
47N20 |
idZBL:
|
Zbl 1080.35033 |
idMR:
|
MR2099352 |
. |
Date available:
|
2009-09-24T11:19:40Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127947 |
. |
Reference:
|
[1] R. A. Adams: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] H. Amann: Linear and Quasilinear Parabolic Problems.Birkhäuser, Basel, 1995. Zbl 0819.35001, MR 1345385 |
Reference:
|
[3] H. Amann, M. Hieber and G. Simonett: Bounded $H_\infty $-calculus for elliptic operators.Diff. Int. Equations 3 (1994), 613–653. MR 1270095 |
Reference:
|
[4] J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodriguez-Bernal: Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains.Nonlinear Anal. TMA56 (2004), 515–554. MR 2035325 |
Reference:
|
[5] A. V. Babin and M. I. Vishik: Attractors of partial differential evolution equations in unbounded domain.Proc. Roy. Soc. Edinburgh 116 (1990), 221–243. MR 1084733 |
Reference:
|
[6] A. V. Babin and M. I. Vishik: Attractors of Evolution Equations.North-Holland, Amsterdam, 1992. MR 1156492 |
Reference:
|
[7] J. W. Cholewa and T. Dlotko: Cauchy problem with subcritical nonlinearity.J. Math. Anal. Appl. 210 (1997), 531–548. MR 1453190, 10.1006/jmaa.1997.5409 |
Reference:
|
[8] J. W. Cholewa and T. Dlotko: Global Attractors in Abstract Parabolic Problems.Cambridge University Press, Cambridge, 2000. MR 1778284 |
Reference:
|
[9] M. A. Efendiev and S. V. Zelik: The attractor for a nonlinear reaction-diffusion system in an unbounded domain.Comm. Pure Appl. Math. 54 (2001), 625–688. MR 1815444, 10.1002/cpa.1011 |
Reference:
|
[10] E. Feireisl: Bounded, locally compact global attractors for semilinear damped wave equations on $R^N$.Differential Integral Equations 9 (1996), 1147–1156. MR 1392099 |
Reference:
|
[11] J. K. Hale: Asymptotic Behavior of Dissipative Systems.AMS, Providence, RI, 1988. Zbl 0642.58013, MR 0941371 |
Reference:
|
[12] D. Henry: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840.Springer, Berlin, 1981. MR 0610244 |
Reference:
|
[13] A. Lunardi: Analytic Semigroup and Optimal Regularity in Parabolic Problems.Birkhäuser, Berlin, 1995. MR 1329547 |
Reference:
|
[14] S. Merino: On the existence of the compact global attractor for semilinear reaction diffusion systems on $R^N$.J. Differential Equations 132 (1996), 87–106. MR 1418501, 10.1006/jdeq.1996.0172 |
Reference:
|
[15] A. Mielke: The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors.Nonlinearity 10 (1997), 199–222. Zbl 0905.35043, MR 1430749 |
Reference:
|
[16] A. Mielke and G. Schneider: Attractors for modulation equations on unbounded domains–existence and comparison.Nonlinearity 8 (1995), 743–768. MR 1355041, 10.1088/0951-7715/8/5/006 |
Reference:
|
[17] S. M. Nikolsky: A Course of Mathematical Analysis.Mir Publishers, Moscow, 1987. |
Reference:
|
[18] R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Springer, New York, 1988. Zbl 0662.35001, MR 0953967 |
Reference:
|
[19] H. Triebel: Interpolation Theory, Function Spaces, Differential Operators.VEB Deutscher, Berlin, 1978. Zbl 0387.46033, MR 0503903 |
. |