Previous |  Up |  Next

Article

Title: Cauchy problems in weighted Lebesgue spaces (English)
Author: Cholewa, Jan W.
Author: Dlotko, Tomasz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 991-1013
Summary lang: English
.
Category: math
.
Summary: Global solvability and asymptotics of semilinear parabolic Cauchy problems in $\mathbb R^n$ are considered. Following the approach of A. Mielke [15] these problems are investigated in weighted Sobolev spaces. The paper provides also a theory of second order elliptic operators in such spaces considered over $\mathbb R^n$, $n\in \mathbb N$. In particular, the generation of analytic semigroups and the embeddings for the domains of fractional powers of elliptic operators are discussed. (English)
Keyword: Cauchy problem
Keyword: parabolic equation
Keyword: global existence
Keyword: asymptotic behavior of solutions
MSC: 35B40
MSC: 35B41
MSC: 35K15
MSC: 35K55
MSC: 37L30
MSC: 47H20
MSC: 47N20
idZBL: Zbl 1080.35033
idMR: MR2099352
.
Date available: 2009-09-24T11:19:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127947
.
Reference: [1] R. A. Adams: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] H. Amann: Linear and Quasilinear Parabolic Problems.Birkhäuser, Basel, 1995. Zbl 0819.35001, MR 1345385
Reference: [3] H. Amann, M. Hieber and G. Simonett: Bounded $H_\infty $-calculus for elliptic operators.Diff. Int. Equations 3 (1994), 613–653. MR 1270095
Reference: [4] J. M. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodriguez-Bernal: Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains.Nonlinear Anal. TMA56 (2004), 515–554. MR 2035325
Reference: [5] A. V. Babin and M. I. Vishik: Attractors of partial differential evolution equations in unbounded domain.Proc. Roy. Soc. Edinburgh 116 (1990), 221–243. MR 1084733
Reference: [6] A. V. Babin and M. I. Vishik: Attractors of Evolution Equations.North-Holland, Amsterdam, 1992. MR 1156492
Reference: [7] J. W. Cholewa and T. Dlotko: Cauchy problem with subcritical nonlinearity.J. Math. Anal. Appl. 210 (1997), 531–548. MR 1453190, 10.1006/jmaa.1997.5409
Reference: [8] J. W. Cholewa and T. Dlotko: Global Attractors in Abstract Parabolic Problems.Cambridge University Press, Cambridge, 2000. MR 1778284
Reference: [9] M. A. Efendiev and S. V. Zelik: The attractor for a nonlinear reaction-diffusion system in an unbounded domain.Comm. Pure Appl. Math. 54 (2001), 625–688. MR 1815444, 10.1002/cpa.1011
Reference: [10] E. Feireisl: Bounded, locally compact global attractors for semilinear damped wave equations on $R^N$.Differential Integral Equations 9 (1996), 1147–1156. MR 1392099
Reference: [11] J. K. Hale: Asymptotic Behavior of Dissipative Systems.AMS, Providence, RI, 1988. Zbl 0642.58013, MR 0941371
Reference: [12] D. Henry: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840.Springer, Berlin, 1981. MR 0610244
Reference: [13] A. Lunardi: Analytic Semigroup and Optimal Regularity in Parabolic Problems.Birkhäuser, Berlin, 1995. MR 1329547
Reference: [14] S. Merino: On the existence of the compact global attractor for semilinear reaction diffusion systems on $R^N$.J. Differential Equations 132 (1996), 87–106. MR 1418501, 10.1006/jdeq.1996.0172
Reference: [15] A. Mielke: The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors.Nonlinearity 10 (1997), 199–222. Zbl 0905.35043, MR 1430749
Reference: [16] A. Mielke and G. Schneider: Attractors for modulation equations on unbounded domains–existence and comparison.Nonlinearity 8 (1995), 743–768. MR 1355041, 10.1088/0951-7715/8/5/006
Reference: [17] S. M. Nikolsky: A Course of Mathematical Analysis.Mir Publishers, Moscow, 1987.
Reference: [18] R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Springer, New York, 1988. Zbl 0662.35001, MR 0953967
Reference: [19] H. Triebel: Interpolation Theory, Function Spaces, Differential Operators.VEB Deutscher, Berlin, 1978. Zbl 0387.46033, MR 0503903
.

Files

Files Size Format View
CzechMathJ_54-2004-4_15.pdf 459.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo