Previous |  Up |  Next

Article

Title: $\oplus$-cofinitely supplemented modules (English)
Author: Çalışıcı, H.
Author: Pancar, A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 1083-1088
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a ring and $M$ a right $R$-module. $M$ is called $ \oplus $-cofinitely supplemented if every submodule $N$ of $M$ with $\frac{M}{N}$ finitely generated has a supplement that is a direct summand of $M$. In this paper various properties of the $\oplus $-cofinitely supplemented modules are given. It is shown that (1) Arbitrary direct sum of $\oplus $-cofinitely supplemented modules is $\oplus $-cofinitely supplemented. (2) A ring $R$ is semiperfect if and only if every free $R$-module is $\oplus $-cofinitely supplemented. In addition, if $M$ has the summand sum property, then $M$ is $\oplus $-cofinitely supplemented iff every maximal submodule has a supplement that is a direct summand of $M$. (English)
Keyword: cofinite submodule
Keyword: $\oplus $-cofinitely supplemented module
MSC: 16D70
MSC: 16D99
idZBL: Zbl 1080.16002
idMR: MR2100016
.
Date available: 2009-09-24T11:20:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127953
.
Reference: [1] R.  Alizade, G.  Bilhan and P. F.  Smith: Modules whose maximal submodules have supplements.Comm. Algebra 29 (2001), 2389–2405. MR 1845118, 10.1081/AGB-100002396
Reference: [2] J. L.  Garcia: Properties of direct summands of modules.Comm. Algebra 17 (1989), 73–92. Zbl 0659.16016, MR 0970864, 10.1080/00927878908823714
Reference: [3] A.  Harmanci, D.  Keskin and P. F.  Smith: On $ \oplus $-supplemented modules.Acta Math. Hungar. 83 (1999), 161–169. MR 1682909, 10.1023/A:1006627906283
Reference: [4] D.  Keskin, P. F.  Smith and W.  Xue: Rings whose modules are $ \oplus $-supplemented.J.  Algebra 218 (1999), 470–487. MR 1705802, 10.1006/jabr.1998.7830
Reference: [5] S. H.  Mohamed B. J.  Müller: Continuous and Discrete Modules. London Math. Soc. LNS Vol.  147.Cambridge Univ. Press, Cambridge, 1990. MR 1084376
Reference: [6] R.  Wisbauer: Foundations of Module and Ring Theory.Gordon and Breach, Philadelphia, 1991. Zbl 0746.16001, MR 1144522
Reference: [7] H.  Zöschinger: Komplementierte Moduln über Dedekindringen.J.  Algebra 29 (1974), 42–56. MR 0340347, 10.1016/0021-8693(74)90109-4
.

Files

Files Size Format View
CzechMathJ_54-2004-4_21.pdf 314.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo